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Abstract

We provide evidence that “noisy coding” is responsible for both (i) classic probability

weighting and (ii) its reversal when the properties of lotteries are learned by sampling

rather than by explicit description. Guided by a stylized model of noisy sampling,

we show that simply forcing experimental subjects to sample redundant information

about the primitives of lotteries causes both probability weighting and the description-

experience gap to disappear, replaced with broadly neoclassical behavior. This strongly

suggests that these anomalies are a joint outgrowth of decision makers’ noisy represen-

tations of the primitives of lotteries rather than expressions of true risk preferences.
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1 Introduction

Probability weighting is one of the key anomalies identified by behavioral economists in the

last half century. As hundreds of experiments have shown, subjects, when given explicit
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descriptions of lotteries, tend to overvalue low probabilities and undervalue high probabil-

ities in a manner that suggests that their risk preferences change with the magnitude of

probabilities. This violation of expected utility theory has typically been interpreted as

an outgrowth of subjects’ true preferences for risk and has therefore been enshrined as a

centerpiece of alternatives to expected utility theory like prospect theory (Kahneman &

Tversky 1979, Tversky & Kahneman 1992).

More recently, researchers have discovered a complication to this interpretation. When

subjects are required to discover the properties of lotteries by sampling from them instead of

by reading explicit descriptions of their properties, probability weighting reverses: subjects

instead tend to undervalue low probabilities and overvalue high probabilities, exhibiting

likelihood dependence that runs opposite to the classical direction (Barron & Erev 2003,

Hertwig et al. 2004). “Decision from experience” (DfE) thus produces deviations from

expected utility theory that are exactly the reverse of those observed under traditional

“decision from description” (DfD) protocols.

This pattern poses a challenge to the literature: in order to understand the nature of

probability weighting – and by extension the nature of risk taking – we must first understand

why it reverses under DfE. However researchers have found it difficult to empirically close

this “description-experience gap” (the systematic differences in behavior in DfD and DfE),

meaning both the gap and by extension the nature of probability weighting itself remain

an open mystery. Resolving this mystery is crucial to understanding the nature of risky

choice in real-world contexts, because real-world decision-making is replete with contexts

both in which risks are learned by explicit description and in which they are learned purely

via experienced outcomes. Understanding how choice is shaped by these contexts – and

why – is central to understanding how social and economic decisions are shaped by risk.

In this paper we offer an explanation for the description-experience gap that also explains

what probability weighting really is and where it comes from. Our explanation is rooted

in a kind of irony: the decision-experience gap, we argue, is a consequence not only of the

fact that DfD and DfE are psychologically different, but also of the fact that they are in an

important sense more psychologically similar than has been previously recognized. Drawing

on arguments and evidence from neuroscience, we argue that the kind of explicit sampling

that occurs in DfE also necessarily occurs implicitly in the brain when a subject reasons

about the properties of fully described lotteries in DfD. The noise that results from this

imperfect neuronal sampling can simultaneously generate classic probability weighting and
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explain why previous efforts in the literature to eliminate the gap have failed. In particular,

we show that efforts to close the gap by forcing subjects in DfE to sample more intensively

than they naturally would has the unexpected effect of simultaneously removing the kind

of coding noise needed for standard probability weighting to occur, leading to behavior

broadly consistent with expected utility theory, rather than probability weighting. This

means the gap can never be eliminated by forcing subjects in DfE to observe larger samples

alone: in order to close the gap, we must also remove coding noise from DfD, and with it

probability weighting.

We provide strong experimental evidence for this “noisy coding” explanation of the gap,

and in the process produce very direct evidence that probability weighting is driven, not

by true preferences that deviate from expected utility theory, but instead by the way the

brain manages imprecise neural representations of information.1 Following the distinctive

predictions of our model, we show that simply by forcing subjects in DfD to sample fully

redundant information from lotteries, we are able to eliminate probability weighting.2 As

a result, our experiment both (i) closes the description-experience gap and (ii) shows that,

when cognitive frictions described by our model are experimentally removed, probability

weighting vanishes and subjects make mildly risk averse lottery choices (in both DfD and

DfE) that broadly comply with standard expected utility theory.

In the first step of our investigation (Section 2), we report a baseline experiment that repli-

cates probability weighting and the description-experience gap. Subjects in Experiment 1

make binary choices between sure payments and a series of lotteries that vary the prob-

ability of earning a non-zero payment between 0.1 and 0.9. In the DfD (decision from

description) treatment, we describe the payoffs and probabilities in these lotteries explicitly

to subjects on their screens. In the DfE (decision from experience) treatment, by contrast,

subjects are instead given buttons that, when clicked, draw a value from one of the two

lottery options, but are otherwise told nothing about the lotteries. The subjects are able

to learn about the lotteries by sampling as many times as they like from each lottery. We

replicate the typical finding in the literature: contra expected utility theory (and most other

1There is growing evidence using multiple types of approaches that noisy cognition is responsible for
probability weighting (Enke & Graeber 2023, Frydman & Jin 2023, Khaw et al. 2023, Oprea 2022, Vieider
2024b). Our contribution is to offer a particularly direct type of evidence for this hypothesis, and to show
that it accounts for the description-experience gap.

2Here and throughout when we call sampled information “redundant” in DfD experiments, we mean it is
redundant in the objective sense that the subject already has access to all of the relevant information. Our
hypothesis is that this information is, however, not subjectively redundant in the sense that it influences the
precision of the subject’s belief.
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preference-based models), subjects’ apparent risk aversion increases with the probability of

the non-zero payment in DfD but instead decreases in DfE, producing a systematic gap in

behavior across the two settings.

In the second part of the paper (Section 3), we identify two sources of bias in DfE that

may be responsible for the gap, using a stylized model. The first is inference bias: because

subjects necessarily draw finite samples in DfE, the probabilistic beliefs they form are

necessarily noisy. Responding to this noise in a Bayesian way, rational decision makers will

combine this information with their prior beliefs about the properties of lotteries, producing

systematic distortions in beliefs. The second is sampling bias: unless subjects draw very

large samples, they will form biased beliefs due to unrepresentative samples, producing

severe biases especially at extreme probabilities. The literature has discussed sampling bias

as a potential source of the gap, but to our knowledge has not yet identified inference bias

as a second influence. However, we show that the two biases are intimately linked: sampling

bias is made more likely and worsened by inference bias, given that the latter is a major

driver of the decision on when to stop sampling. Examining data from Experiment 1, we find

evidence that subjects indeed under-sample and what’s more that this under-sampling is

linked to evidence of noisy beliefs, suggesting that it is rooted in inference bias as predicted

by our model.

A key implication of this model is that both sampling and inference bias should disappear

in DfE simply by forcing subjects to draw sufficiently large, representative samples. To the

extent that these biases in DfE are responsible for the gap, such forced sampling should

cause the gap to disappear too. In Experiment 2, we therefore introduce the DfE+forced

treatment, which replicates the environment of Experiment 1 but forces subjects to draw a

balanced, representative large sample from each option in DfE before making a choice. We

find that this indeed alters behavior, removing likelihood dependence (and reverse prob-

ability weighting) from DfE as our model predicts. However, as in previous experiments

(Ungemach et al. 2009, Aydogan & Gao 2020, Cubitt et al. 2022), we find that removing

biases from DfE in this way does not eliminate the decision-experience gap.3

In the third step (Section 4), we test our key hypothesis: that the reason eliminating bias in

3Forced sampling is not the only strategy that has been deployed in the DfE literature to try to close the
gap. Alternative attempts have e.g. used a matching technique whereby probabilities in DfD were modeled
after actually observed samples in DfE (Hau et al. 2010). Obtaining the original data of the universe of DfE
studies using the sampling paradigm, Wulff et al. (2018) examined the problem only using the subset of data
in which probabilities were sampled correctly. However, none of these studies managed to completely close
the gap. See Wulff et al. (2018), from p. 151, for a review and discussion of such attempts to close the gap.
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DfE doesn’t close the gap is because similar biases distort choice in standard DfD settings

as well. Drawing on a long line of evidence from neuroscience, we argue that even fully

described probabilities must be represented in the brain using a finite neuronal architecture.

Because of this, beliefs in DfD are afflicted by a similar sort of imprecision as beliefs in DfE

(and for a similar reason), producing parallel inference bias: combining noisily represented

probabilities with prior beliefs causes a Bayesian distortion of lottery valuations, leading

the decision-maker to over-weight small and under-weight large probabilities. However,

because probabilities are explicitly described in DfD, DfD beliefs are not subject to the

compensating effects of sampling bias. We show that because of this, inference bias will

produce a pattern of insensitivity that generates probability weighting in DfD but not

DfE. This not only provides a hypothesis about the source of probability weighting (i.e.,

as an expression of inference bias), it also explains why forced sampling does not close the

gap in DfE: forced sampling simultaneously removes sampling and inference bias in DfE,

preventing probability weighting from ever emerging in DfE, and thus preventing DfE and

DfD behaviors from converging.

Crucially, this joint explanation for probability weighting and the persistence of the gap also

provides a recipe for removing both. By forcing subjects to sample completely redundant

information in DfD, our model suggests we can cause subjects’ beliefs to become more pre-

cise, eliminating inference bias and with it probability weighting, and causing DfD and DfE

behaviors to converge. To test this, in Experiment 3 we introduce the DfD+forced treat-

ment in which we force subjects in DfD to also sample repeatedly from lotteries that have

already been fully described to them. Providing this redundant information causes proba-

bility weighting and likelihood dependence to entirely disappear, producing DfD behavior

that is identical to DfE+forced behavior and thereby entirely closing the decision-experience

gap. Indeed, increasing the precision of beliefs in this way causes behavior in both settings

to become remarkably neoclassical: under forced sampling, subjects in both settings exhibit

mild, uniform risk aversion that is broadly consistent with standard expected utility theory.

Structurally estimating our model, and using additional data on inconsistencies in choices

in repeated tasks, we show that subjects indeed hold highly noisy beliefs in both our DfE

and DfD environments, a key premise of our explanation for probability weighting and the

gap. We also show that forced sampling causes a dramatic improvement in the precision

of these beliefs in both treatments, accounting for our treatment effects. What’s more, as

our model predicts, we find that it is precisely the subjects with the noisiest initial beliefs

whose behavior is most impacted by forced sampling in DfD.
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Finally, we introduce a robustness treatment that tests two additional distinctive predic-

tions of our explanation and model. In the DfD+free treatment, subjects are allowed to

randomly sample from fully described lotteries, but are not forced to. Remarkably, we find

that subjects in this treatment choose to voluntarily sample information from already fully

described lotteries – evidence that subjects, in an important sense, have residual uncertainty

about the properties of lotteries that have been described to them, a key ingredient of our

explanation for the gap. Next, we show that because of this residual uncertainty, volun-

tary sampling introduces sampling bias in DfD, another strong indication that subjects are

uncertain about the properties of these fully described lotteries. In fact, this introduction

of sampling bias to DfD causes DfD behavior to converge to DfE behavior, closing the

decision-experience gap in a second, complementary way. Both of these findings seem to

strongly reinforce our finding that subjects suffer from significant cognitive imprecisions in

classic DfD environments, the key premise of our model.

Our paper contributes to several literatures. First is a long running literature on probability

weighting and related anomalies, going back to Preston & Baratta (1948). Probability

weighting became a key component of prospect theory (Kahneman & Tversky 1979, Tversky

& Kahneman 1992, Tversky & Wakker 1995, Wakker 2010), and is the mechanism by which

that theory accounts for phenomena like the coexistence of lottery play and insurance

uptake and the Allais paradoxes. Numerous empirical studies have documented systematic

increases of relative risk aversion in the probability of winning a prize (e.g., Hershey et al.

1982, Wu & Gonzalez 1996, Gonzalez & Wu 1999, Abdellaoui 2000, Bruhin et al. 2010,

L’Haridon & Vieider 2019), a key signature of probability weighting.

The second is a literature documenting the gap between decisions from description and

decisions from experience (Barron & Erev 2003, Hertwig et al. 2004). Sampling bias was

proposed as an early explanation for the systematic gap observed between DfE and DfD

(Fox & Hadar 2006). However, subsequent investigations showed that, although sampling

bias is an important contributor to the gap, interventions including (i) eliminating sampling

bias by matching probabilities in DfD to DfE, (ii) increasing the samples by offering higher

stakes, and (iii) forcing people to sample the complete urn in DfE fail to eliminate the gap

(Ungemach et al. 2009, Hau et al. 2010, Hertwig & Pleskac 2010, Wulff et al. 2018). Because

of this, the underlying causes of the gap have largely remained a mystery—see Hertwig &

Erev (2009) and de Palma et al. (2014) for narrative reviews, and Wulff et al. (2018) for

a systematic meta-analysis of the decision-experience gap and possible factors contributing

to it.
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The third is a growing literature documenting the role noisy cognition plays in behavioral

anomalies (Natenzon 2019, Khaw et al. 2021, Frydman & Jin 2022). Most closely related

is a line of research examining how cognitive noise (and efficient ways the brain deals

with such noise) contributes to probability distortions (Zhang & Maloney 2012, Steiner &

Stewart 2016, Zhang et al. 2020, Netzer et al. 2021, Frydman & Jin 2023, Herold & Netzer

2023, Khaw et al. 2023, Vieider 2024b). More broadly, our work is related to a literature

documenting the role cognitive frictions play in decision-making under risk (Oprea 2022,

Enke & Graeber 2023, Bohren et al. 2024) and, broader still, the way cognitive constraints

and the brain’s response to these constraints explain a wide class of anomalies in decision

making (Simon 1959, Robson 2001a,b, Netzer 2009, Robson & Samuelson 2011).4

2 The Description-Experience Gap

Suppose a decision maker (DM) has to make a choice between two lotteries:

• Lottery S (safe): pays c with probability 1.

• Lottery R (risky): pays x > c with probability p (and y < c otherwise).5

For about 70 years, researchers have been studying this choice problem in what has come to

be the standard way: decision makers are explicitly told how many outcomes each lottery

can produce, the payoffs each outcome results in and the probabilities of each outcome. The

DM uses this information to choose the lottery she prefers. Call this standard paradigm

“decision from description”, or DfD.

One of the key regularities researchers have found in DfD experiments is probability weight-

ing : experimental subjects tend to treat low probability outcomes as if they are more likely,

and high probability outcomes as if they are less likely than they really are. This produces

systematic differences in the severity of subjects’ apparent risk aversion at low relative to

4A recent, contemporaneous paper, Bohren et al. (2024), documents and decomposes a complemen-
tary description-experience gap that operates in richer environments than the one we (and the previous
description-experience literature) study. In evaluating realistic lotteries with many potential outcomes (e.g.,
eleven outcomes), they show that subjects’ behavior tends to be constrained by memory limitations in DfE,
while it tends to be constrained by attentional limitations in DfD. This leads to systematic differences in
lottery choices in DfE and DfD environments – a gap that can be eliminated with aids to attention and
memory.

5Although we will focus on binary lotteries in our exposition, our framework easily extends to multi-
outcome lotteries via an N-dimensional generalization; see the Online Appendix for details.
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high probabilities, violating standard expected utility theory (EUT) because it implies that

the measured concavity of the subject’s utility function increases in the probability used

to obtain the measurement (Hershey et al. 1982). Observed risk attitudes thus exhibit

likelihood-insensitivity, changing most for very small and very large probabilities near 0 and

1, but reacting insufficiently to changes in probabilities at interior probabilities (Tversky &

Wakker 1995, Wu & Gonzalez 1996, Prelec 1998).

To illustrate, consider the popular linear in log odds (LLO) probability weighting function

from Gonzalez & Wu (1999):

ln

(
w(p)

1− w(p)

)
= ln(δ) + γ ln

(
p

1− p

)
, (1)

where w(p) designates the probability weighting function.6 In this parameterization, the

intercept parameter δ governs the elevation of the function, producing (in conjunction with

utility curvature) average risk aversion, while γ compresses evaluations: γ < 1 inflates

odds smaller than 1, and deflates odds larger than 1, generating the pattern of likelihood-

insensitivity widely found in the PT literature (Tversky & Kahneman 1992, Wu & Gonzalez

1996, Gonzalez & Wu 1999, Bruhin et al. 2010, L’Haridon & Vieider 2019). Previewing

results from our experiment, panel A of Figure 1 illustrates the typical pattern using the

median parameters from our DfD data.

More recently, researchers have studied an alternative paradigm to DfD for studying lottery

choice, that gives us an important potential clue as to the nature of probability weighting. In

“decisions from experience” (DfE) experiments (Barron & Erev 2003, Hertwig et al. 2004),

subjects are told nothing about lotteries R and S but must learn all of their properties,

including the number of distinct outcomes they can produce, entirely by sampling each

of the lotteries. In standard DfE experiments (under the so-called “sampling paradigm”),

subjects choose how many times to sample each lottery and use the information gleaned

from these samples to make their decision.

Perhaps the most important finding from DfE experiments is that they produce a reversal

of standard probability weighting: subjects tend to treat low probability outcomes as if

they are less likely than they are, and high probability outcomes as if they are more likely

than they really are. Again previewing results from our experiment, Panel B in figure 1

6On the probability scale this function takes the form w(p) = δpγ

δpγ+(1−p)γ
. Prelec (1998) presents an

alternative 2-parameter function that is also often used in the literature. The two functions produce virtually
identical predictions except at extreme probabilities, which are rarely tested for practical reasons.
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Figure 1: Probability weighting functions in DfD and DfE
The figure shows probability weighting functions based on the median parameters of a linear in log-odds function
estimated from our experiments. Panel A shows the weighting function obtained from description-based choices,
producing the standard pattern of likelihood-insensitivity (parameters are δ = 0.88 and γ = 0.81). Panel B
shows the weighting function obtained from the DfE data, which exhibits the opposite pattern of likelihood-
over-sensitivity (the parameters are δ = 0.81 and γ = 1.56).

illustrates the resulting LLO function using the median parameters from our experiment’s

DfE data (discussed in detail below).7 In this data we find the typical pattern in DfE:

small probabilities are treated as though they were less likely than they truly are, whereas

large probabilities are treated as being more likely—a reversal of standard DfD probability

weighting.

The inverted responses in DfE and DfD produce what the literature has called the “decision-

experience gap” (hereafter, simply the GAP) in lottery choice – an open mystery in the

literature. Understanding the source of this gap is crucial to understanding not only the

way description and experience differentially shape choice, but also the true nature of the

classical phenomenon of probability weighting itself. Despite many attempts, researchers

have failed to close this gap, and therefore have failed to fully uncover why behaviors in these

two settings differ as dramatically as they do. In this section, we will begin by reporting an

experiment that replicates this GAP, illustrating its features.

7The estimate is based on a ”naive PT estimation” using the actual outcome-generating probabilities
(see Wulff et al. 2018, pp 157-159, for a discussion of such estimations in the literature).
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(a) DfD Treatment (b) DfE Treatment

Figure 2: Screenshots from Experiment 1.

2.1 Experiment 1: DfD and DfE Treatments

In Experiment 1, we replicate the GAP between decision from description (DfD) and de-

cision from Experience (DfE). In our experiment, subjects face 18 distinct binary choice

problems like those discussed in the previous section: one lottery pays an amount c with

probability 1, and the other an amount x > c with probability p and y < c otherwise. These

lotteries vary p across 0.1, 0.15, 0.2, 0.8, 0.85 and 0.9 and vary payoffs x, y and c. The

outcomes are chosen so that the sure amount c is symmetric around the expected value

(EV ) of the lottery. This will allow us to get a rich picture of behavior, and is crucial for

identification in structural exercises reported in Section 6, below. Details on parameters are

provided in Online Appendix B and we will use identical lotteries in each of the experiments

reported later in the paper.

Lotteries are described to subjects as “bags,” containing 20 “coins,” each of which is worth

a different amount of money. After choosing a lottery, a single coin is drawn from the bag

to determine the subject’s payment.

Treatments. Experiment 1 consists of two treatments. In the Decision from Description

treatment (DfD), the subject is explicitly told the properties of each lottery (i.e., the con-

tents of each bag); Figure 2a shows a screenshot. A pair of radio buttons below the lottery

description allows the subject to make and submit a choice between the two lotteries (i.e.,

a choice of which lottery will be realized to determine the subject’s payment).

In the Decision form Experience (DfE) treatment, the subject is instead shown two buttons,

one for each of the two lotteries/bags. Figure 2b shows a screenshot. When the subject

clicks on the button, she is shown a single realization of the lottery (i.e., a single draw

from the bag, with replacement). The subject is told nothing about either lottery ahead

of time and thus must learn all of their properties (e.g., the number of possible outcomes,

the relevant probabilities, the payoffs in each outcome etc.) by sampling. The subject in

the Figure 2b example has just clicked the “Sample Bag A” button and drawn $2. Each
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sample is shown for 0.5 seconds. Subjects are allowed to sample as many (or as few) times

as they like from the two bags, with no time constraints. Below the sampling buttons are

the same two radio buttons shown beneath the lottery descriptions in DfD, and the subject

can choose one of the lotteries to determine her payment whenever she is ready.

Repetition. Unbeknownst to subjects, four of the 18 lotteries are randomly selected (at

the subject level) to be repeated. This randomization is included to allow us to measure

the noisiness of subjects’ decisions (useful for the structural estimation in Section 6). Thus

subjects face, in total, 22 lotteries in an order that is randomized at the subject level.

Stages. Each session in the experiment proceeds in two stages. In Stage 2, subjects

experience their main treatment: 22 randomly ordered lottery choices under DfD or DfE,

depending on treatment. In Stage 1, subjects face the same 22 binary choice tasks under

DfD (in a different random order). We included Stage 1 for several reasons. First, doing this

allows us to examine the description-experience GAP both within-subject (by comparing

Stage 1 and Stage 2 in the DfE treatment) and between-subjects (by comparing Stage 2

in the DfE vs. DfD treatment). Second, including Stage 1 is useful for fixing prior beliefs

about lotteries and linking DfD and DfE behavior, both of which will be useful for structural

estimation in Section 6.

Implementation. We ran 99 subjects through the DfD treatment and 99 subjects through

the DfE treatment on Prolific in September of 2023. We paid all subjects $6 and selected ten

percent of them to be paid based on a lottery outcome from a randomly selected task. The

median subject spent 18 minutes in the experiment and the average subject earned $18.67

per hour. Instructions to subjects, including four comprehension questions, are included in

Online Appendix H.

2.2 Results

We focus on results from the main part of the experiment (Stage 2) and on the between-

subjects contrast between treatments; in Online Appendix G we show virtually identical

results in within-subjects comparisons between Stage 1 and 2 in the DfE treatment. Panel

A of Figure 3 plots the fraction of times subjects chose the risky lottery in DfD versus DfE,

aggregated by probability of winning, p, and pooling across values of c.8 This figure repli-

8Figure 9, included farther below, provides an overview of choice proportions at the task level resolution.
We will also make use of variation across values of c in our structural analysis in Section 6. See Online
Appendix G for graphs that break the analysis down by c.
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cates the main stylized patterns from the DfE literature—risk taking is more pronounced

in DfD than DfE for small probabilities, and this difference reverses for large probabilities,

with DfE eliciting higher levels of risk taking. The size of the gap in choice proportions

between treatments is relatively small at low probabilities, but becomes very large at large

probabilities.9 As we show farther below, the GAP is also strongest in tasks in which the

expected value of the lottery exceeds the sure amount – the main type of task studied in

the early DfE literature. The fact that the size and even direction of the GAP are sensitive

to task characteristics like these is consistent with prior work (Glöckner et al. 2016).
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Figure 3: The GAP: Decisions from Description vs Decisions from Experience
The figure shows choice proportion for the lottery in DfD and DfE, ordered by probability of winning. Panel A
shows the between subject comparison using the DfD and DfE treatments, fitted with a linear regression line.
The error bars indicate 1 standard error. Panel B shows structural estimates of the LLO probability weighting
function for each treatment, using median parameter estimates.

Quantifying the GAP. To get a better idea of the size of the decision-experience GAP in

our data, and to relate it to typical findings in the literature, we can aggregate the evidence

across tasks using the tools of meta-analysis.10 Let πd = Rd/Nd be the proportion of risky

choices in DfD, where Rd is the number of risky choices, and Nd the number of observations.

Let πe = Re/Ne be the proportion in DfE. We define the difference in choice proportions as

g, where we encode the difference in the direction of the standard gap, so that g = πd − πe

for p < 0.5 and g = πe − πd for p > 0.5. This difference will be approximately normally

9This is consistent with the fact that the risk seeking for small probabilities documented using certainty
equivalents in DfD is typically small or nonexistent in binary choice settings like ours (Bouchouicha et al.
2023).

10The meta-analytic tools we use are identical to a “measurement error model”. That is, the assumption
is that each single choice proportion is observed with some error. Meta-analysis then allows us to aggregate
across the choice proportions while eliminating measurement error and thus correcting our analysis for
multiple testing across many moderate (and not statistically independent) samples.
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distributed, with variance π(1− π) (1/Nd + 1/Ne), where π = πd+πe

Nd+Ne
. We can now use g and

its associated standard error, se, for meta-analytic aggregation across tasks, indexed by i:

gi ∼ N ( ĝi , se
2
i )

ĝi ∼ N (ω , τ2 ),

where g and se are data, ĝ is the unknown true effect, and ω and τ are parameters capturing

the meta-analytic mean and standard deviation across tasks, respectively (further details

and the code used can be found in Online Appendix D). We quantify the GAP by meta-

analytically aggregating the differences in choice proportions across tasks in a direction

that is consistent with the standard GAP. Between subjects we find an average GAP of

15.7 percentage points (pp), with a 95% credible interval of [9.7 , 21.8] pp. The GAP is

clearly significant and large: in their meta-analysis of the GAP, Wulff et al. (2018) report a

meta-analytic average of 9.7 pp, meaning we find a somewhat larger description-experience

gap than is typical in the literature.

Reversals in Likelihood Dependence. We can also use meta-analysis to test whether

choice proportions exhibit likelihood-dependence, and whether the nature of this depen-

dence is different in DfE and DfD. To do this, we analyze the choice proportions πi

directly (instead of examining differences in choice proportions gi) so that we estimate

πi ∼ N ( π̂i , sei ). We then use meta-regression to assess the dependence of the choice pro-

portions on the probability of winning, by letting π̂i ∼ N (λ0 + λ× pi , τ
2 ), where π̂i is the

unknown true choice proportion.

Beginning with DfD, we obtain a coefficient of λ = −0.172, with a 95% credible interval

of [−0.242 , −0.098] (within-subject analysis yields very similar results). Risk taking thus

clearly decreases in the probability of winning in DfD, matching the typical finding in the

prospect theory literature. This contrasts sharply with findings using the DfE data, where

meta-analytic regression of choice proportions on true outcome-generating probabilities pro-

duces a λ = 0.284, with a credible interval of [0.226 , 0.347]. Probability-dependence of risk

taking is thus strong in both DfD and DfE, but runs in exactly opposite directions. This is

the typical finding in the DfE literature.

In Panel B of Figure 3, we illustrate this reversal by once again showing structural esti-

mates of an LLO parameterization of the probability weighting function. We structurally

estimate this model on choice data for each subject in the dataset using Bayesian hier-

archical techniques, and plot the resulting probability weighting function for the median
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parameters in DfD and DfE (Online Appendix F discusses the details of the estimation,

discusses identification, and provides the code). Because of the reversal of the direction of

likelihood dependence in DfE, the standard pattern of probability weighting documented in

the prior literature for DfD is reversed in DfE. Once again, this is perhaps the most salient

finding from the literature on decisions from experience.

3 Removing Bias from DfE

What is responsible for the GAP and the reversals of likelihood dependence that produce

it? Given the relative novelty of DfE (and the widespread tendency to interpret probability

distortions in DfD as outgrowths of true preferences) it is natural to begin by trying to

understand potential biases in DfE. In this section, we highlight two basic biases we should

expect in DfE for even a rational decision-maker. The first (long-emphasized in the liter-

ature, e.g. Fox & Hadar 2006, Hertwig & Pleskac 2010) is sampling bias: unless the DM

collects a large sample, she runs the risk of drawing misleading samples that systematically

distort beliefs particularly at extreme probabilities. The second (which has not been em-

phasized in the literature so far) we will call inference bias: because the DM’s sample is

finite, she cannot be entirely confident in the sample she draws. This will make it optimal

to combine such samples with her prior beliefs in a Bayesian fashion, distorting her poste-

rior beliefs. As we will show, these biases should be related to one another and can jointly

produce the GAP.

In this section we build a model of DfE designed to show where these two biases come from,

examine their relationship and motivate our next empirical steps. To fully specify a model

of DfE, we must describe not only how people form beliefs about probabilities and payoffs

(the beliefs that matter for understanding these biases), but also how these beliefs co-evolve

with higher order beliefs about the structure of the lotteries (e.g., the number of outcomes

in each lottery’s support). To close the model, it is therefore necessary to make a number of

detailed modeling choices about the evolution of these structural beliefs that are unrelated

to the qualitative properties of inference and sampling biases and that therefore do not

directly impact the way we interpret and design our experiments. In the Online Appendix

we propose such a fully specified model.11 But in this section, for expositional ease, we

11In the full version of the model in Online Appendix A, we close the model by assuming that (i) subjects
mainly use samples to build beliefs about the comparative properties of the two choice options (which seems
likely given the choice subjects face), (ii) that subjects know that they are making a risky choice and that
the choice is therefore not between two degenerate lotteries (which seems likely given the lotteries subjects
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abstract from these issues of higher order belief formation altogether by (i) assuming that

subjects already know the structure of the lotteries (i.e., assuming beliefs evolve according to

a Beta instead of the Dirichlet used in the full model in the Appendix)12, (ii) assuming that

subjects quickly identify which lottery is risky during sampling and (iii) focusing attention

in the model on the way subjects evaluate the risky arm. In the fully specified, general

model in Online Appendix A we discuss the implications of these assumptions, but argue

that they are qualitatively irrelevant to the key matters at hand.

To model the way beliefs change as the DM samples the simple binary lotteries from Ex-

periment 1, let α be the number of draws in which the DM observed payment x and β the

number of draws in which she observed payment y.13 We model this sampling process using

a Beta distribution with parameters α and β, producing a representation of the probability

p of earning x (e.g. in lottery R described above) equal to E[ p̂ | p ] = α
α+β (i.e.the sampled

mean probability p̂, given the true probability p).14 We will assume that the DM’s beliefs

are represented in a log-odds form. This is not necessary for any of our qualitative conclu-

sions in what follows, but (i) it is increasingly supported in neuroscience both empirically

and theoretically15 and (ii) it will allow us to neatly connect our characterization to the

exclusively see in Part 1 of the experiment) and (iii) make a few other technical assumptions required to fully
specify the joint inference problem. The main implication of (ii) is that inferences in which the outcomes
observed in both choice options are attributed probability close to 1 will carry very high noise, in a sense to
be made precise below. Within the formalism of the model, this assumption mainly serves to explain why
subjects take more than 1 sample from each option.

12In our experiment, this is in fact a fairly realistic assumption, given that subjects entering DfE have all
just made a number of lottery choices, all with the same structure.

13For simplicity, we focus attention here on the evolution of beliefs about the non-degenerate lottery,
which are the beliefs relevant for understanding these biases. Although beliefs about the degenerate lottery
clearly matter quantitatively, the DM’s decision is comparative between the two options which means this
has little bearing on qualitative properties of the model. Of course, in Online Appendix A.1 we remove these
simplifications in the general version of the model.

14It is important to emphasize that our model does not require us to assume that the DM knows the
structure of the decision problem. We use a Beta distribution here purely for expositional simplicity, and
because binary lotteries is all a DM will ever experience in our experiments. Our model generalizes to any
number of outcomes by using a Dirichtlet distribution—the multi-dimensional generalization of the Beta—to
represent the different states. Indeed, we can use Dirichlet distributions defined over all possible outcomes
to explicitly model the inference process of the DM about the underlying state space in DfE—an important
element that distinguishes our approach from some of the DfE literature in economics, which has assumed
that the DM (often counterfactually) knows the objective state space or which has (in some papers) provided
this information ex ante in experiments (Abdellaoui et al. 2011, Aydogan 2021, Cubitt et al. 2022). Online
Appendix A provides details of the inference process, and of how the model we use here can be generalized
to N states of nature.

15It is common in neuroscience to assume that the brain represents the sort of evidence encoded by α and
β in terms of log-odds. This is in part because of its computational efficiency for the brain, a straightforward
consequence of the fact that new evidence can be simply added to pre-existing evidence, which is a much
less computationally expensive operation than, e.g., multiplication. (Indeed, Gold & Shadlen (2002) show
how just such a computationally tractable choice rule was used by Alan Turing to decode the Nazi navy’s
Enigma code. In the absence of modern computing power, being able to additively combine evidence proved
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standard LLO functional form of the probability weighting function (used to characterize

our findings in Experiment 1 and in our structural estimation below).

Inference Bias. Because α and β are finitely sampled, they produce noisy beliefs about

the true probabilities. Note that such beliefs would be noisy in finite samples even if the

samples were accurate on average, since the DM can never be 100% sure of whether a

given sample correctly reflects the underlying outcome-generating probability. We can thus

represent the typical inference on the log-odds as follows:

ln

(
p̂

1− p̂

)
= ln

(
α

β

)
= ln

(
p

1− p

)
+ ε, (2)

where the error term ε captures uncertainty in the representation of the true log-odds due

to the finite sample.

The log-odds formulation gives rise to approximately normally distributed errors even with

relatively few observations (see e.g. Gelman et al. 2014, section 5.6), which we will (given

our Experiment 1 results) assume. Following the characterization of the logit-normal dis-

tribution by Atchison & Shen (1980), it is straightforward to obtain the average noise from

the sampling draws representing the odds:

ε ∼ N ( 0 , ν2 ) , ν2 = 𭟋′(α) +𭟋′(β), (3)

where 𭟋′ represents the trigamma function. We will refer to ν2 as the inference noise, and

it is clear that this noise will decrease in the number of draws α + β, at a decreasing rate

(an inherent characteristic of the Beta distribution).16

Given this inference noise, a Bayesian DM will rationally combine the results of her sampling

with her prior beliefs about the log odds. Continuing with our log-odds characterization of

beliefs, assume the prior takes logit-normal form

crucial for this process.) It is also in part because of the empirical success of such representations. For
instance, Zhang & Maloney (2012) describe log-odds representations as “ubiquitous”, discussing a long list
of findings which can be fit by log-odds representations. Glanzer et al. (2019) identify a unique empirical
signature of log-odds representations, and argue that such representations underlie neural representations in
general.

16The sum α + β is known as the concentration of the Beta distribution, which can be interpreted as a
measure of confidence in the mean belief. Equivalently, we can thus interpret the precision of the log-odds
presentation, ν−2, as a measure of confidence in the sampled log-odds. Olschewski & Scheibehenne (2024)
present a discussion of different types of noise arising when decision-makers need to infer (and bet on) means
of a series of sampled numbers, and present a concept of “Thurstonian uncertainty” that resembles what we
here call inference noise.
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ln

(
p

1− p

)
∼ N

(
ln

(
p0

1− p0

)
, σ2

)
. (4)

Even if samples are themselves unbiased, combining information from noisy samples with

prior beliefs will produce inference bias. As we show in more detail in Appendix A.3, the

average posterior expectation of the log-odds being inferred, ℓ̂o, conditional on the true

log-odds, ℓo, will take the following form:

E
[
ℓ̂o

∣∣ ℓo ] =
σ2

σ2 + ν2
ln

(
p

1− p

)
+

ν2

σ2 + ν2
ln

(
p0

1− p0

)
= ln

(
p

1− p

)
+ (1− γ)

[
ln

(
p0

1− p0

)
− ln

(
p

1− p

)]
.

(5)

where γ = σ2

σ2+ν2
is the Bayesian evidence weight. The second line of this equation shows

this inference bias: the true log odds, shown in the first term, are distorted by the bias

captured by the second term. The larger the inference noise ν, the smaller the Bayesian

evidence weight γ, and the larger the inference bias will be.

Sampling Bias. The preceding discussion assumed that α and β are, on average, sampled

in an unbiased way (i.e., ln
(
α
β

)
= ln

(
p

1−p

)
on average). However, the binomial distribution

will produce samples that are skewed towards 0 in lotteries with small probabilities, and

skewed towards 1 in lotteries with large probabilities (Fox & Hadar 2006, Hertwig & Pleskac

2010). Unbiased samples in any given task will only obtain if the DM takes very large

samples. As it turns out, this is not the case in our data. As we show in more detail in

Online Appendix G (and in figure 4 below), subjects in our DfE treatment chose to sample

only 8 draws on average—far too few to produce reliably unbiased samples. As a result, we

should expect the ratio of α and β observed by subjects to produce systematically biased

impressions of the log odds (even setting inference bias aside). This is particularly true of

samples taken from lotteries with extreme probabilities, where sampling bias is most likely

and where the gap between description and experience is most severe.17

To understand why DMs tend to undersample in DfE (and to set up some structure and

notation that will be useful in our structural estimates later in the paper), we model the

DM’s choice problem in DfE. As we show in Online Appendix A, expected value maximiza-

tion in the simple choice problems from Experiment 1 entails a choice rule in which the

17For instance, close to 50% of subjects taking 7 samples from a lottery providing an objective probability
of 0.1 of winning a prize x will never observe that prize. Even after 10 draws, only about 40% will draw a
sequence correctly representing the underlying probability.
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DM trades off the log-odds against the log cost-benefit ratio, ln
(
c−y
x−c

)
. For expositional

simplicity, we will assume in this section that the log cost-benefit ratio (unlike the log-odds)

is objectively perceived, though clearly it will in fact be learned by sampling just as the

log odds are. This assumption will have no impact on our qualitative predictions here but

greatly simplifies the exposition.18 In Appendix A.3, we show that this yields the following

discriminability equation:

ψ =
γ × ln

(
p̂

1−p̂

)
− ln

(
c−y
x−c

)
− ln(θ)

ν × γ
, (6)

where θ ≜
(
1−p0
p0

)1−γ
= δ−1 can be interpreted as a measure of “risk aversion” generated by

the distorting influence of the prior.19 Note that we now use p̂ instead of p because in any

given task, the inferred probability may be affected by both inference bias and sampling

bias. As the DM samples from the lottery, ψ adjusts, with positive values supporting the

risky option and negative values the safe option. The DM stops sampling once ψ reaches

a sufficiently extreme value, passing a discriminability threshold (see Appendix A.3 for

details). When exactly this threshold is reached will depend on θ, with larger values of θ

making it harder to pass the threshold needed for a choice of the risky option. This is the

sense in which θ captures average risk aversion in the model.20

Why might this choice process lead to under-sampling, and thereby sampling bias? A major

ingredient is inference bias itself. At low probabilities, the skewed nature of the binomial

distribution will tend to produce exclusive initial draws in favor of the low outcome y.

This will result in high levels of inference noise initially (cfr. Online Appendix A.3), and

thus shrinkage towards the (“risk averse”) prior θ. Sampling bias and inference bias thus

reinforce one another, pushing the DM to take few samples and resulting in an over-selection

18It is straightforward to extend the model to include inference bias in cost-benefit perceptions—see Vieider
(2024b). In our quantitative analysis (our structural model) below, we will take explicit account of the effects
of sampling on the DM’s beliefs about the cost-benefit ratio.

19Note that we do not assume the prior to entail risk aversion. We rather treat it as a free parameter
through which any underlying risk aversion of the DM may manifest in the model.

20Since the prior can be expected to change only very slowly, we will take it to be fixed for the purposes of
interpreting results from the experiment. Indeed, as in Experiment 1, in all of our experiments we employ
a two-part within-subject design, in which subjects see the same tasks in the first and in the second part,
making such an assumption especially empirically plausible. What is assumed fixed in our modeling, are
the parameters p0 and σ. Both the threshold parameter θ and the likelihood-discriminability parameter
γ will be endogenous due to variation in inference noise, ν. Beyond that, we do not require any specific
assumptions about the prior. In particular, the prior over the unit interval of probabilities could take any
shape, including one with multiple peaks. The mapping back onto the log-odds scale will ensure that the
prior is well behaved, and that it will typically abide by the normality assumption. This is indeed a standard
assumption for log-odds transformations in statistics—see e.g. Gelman et al. (2014), section 5.4.
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of the safe lottery. Conversely, high probability lotteries will often produce exclusive early

evidence of the prize x. This will again result in high levels of inference noise, but inference

bias and sampling bias now pull in opposite directions. This will delay arrival at the

discriminability threshold and lead to much more sampling than at low probabilities. This

will yield a reduction in average sampling bias concomitantly to a reduction in inference

bias, thus resulting in higher levels of risk taking (especially by DMs who continue to draw

“optimistic” samples that overestimate the true probability). As we discuss in more depth in

Appendix A, taken together this will tend to produce risk averse choices at low probabilities

and risk-tolerant choices at high probabilities: exactly the pattern we documented in the

previous section for DfE.

Evidence of Sampling and Inference Bias in DfE. This line of argument suggests that

the relatively low risk taking at small probabilities and high risk taking at large probabil-

ities typically observed under DfE is due not only to sampling bias (a bias the literature

has previously discussed), but also to inference bias. Importantly, our model suggests a

distinctive test for inference bias by predicting that (i) sampling behavior should vary with

the probability of the prize, p; and (ii) this dependence should vary according to the sub-

ject’s pre-existing level of risk aversion as captured by the prior mean. This follows from

equation (5), which shows that inference bias is a function not only of inference noise, but

also of the difference between the outcome-generating log-odds and the prior mean, i.e. of

ln
(

p0
1−p0

)
− ln

(
p

1−p

)
. Lower levels of p0 – which, in the model, produce a more risk averse

prior – will intensify shrinkage for large probabilities while attenuating it for small proba-

bilities, thus increasing the likelihood-dependence of sampling behavior. Highly risk averse

DMs should thus sample more at higher relative to lower probabilities; this pattern should

be weakened or even reversed for DMs with risk tolerant priors.

Intuitively, the more risk averse a DM is to start with, the more evidence will be required

to convince her to choose the risky option R. Inference bias will thus ultimately determine

both sampling and observed risk taking in our DfE data. Uniform samples of y observed for

small probabilities agree with a risk averse prior, so that discriminability quickly becomes

very negative and triggers a choice of the safe option. Uniform samples of the prize x for

large probabilities, however, clash with risk averse priors, thus increasing samples. This

will reduce inference bias and shrinkage, and thus produce risk taking especially by DMs

drawing relatively “optimistic” samples when compared to the true probability p.

To test this, we categorize DfE subjects (from Experiment 1) according to their risk aversion
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Figure 4: Samples by probability and risk aversion
The figure shows the number of samples taken from the risky option by probability and risk aversion. Risk
aversion is assessed as the proportion of safe choices in the first, DfD part of the experiment, after removing
repeated tasks. The categorization is obtained using a median split. Error bars show ±1 standard error.

using their propensity to choose risky lotteries in Stage 1 by simply counting the number of

Stage 1 risk averse choices subjects make. Splitting the sample at the median, we classify

subjects as exhibiting Low or High ex ante risk aversion.21 In Figure 4, we plot the mean

number of samples taken from the risky option in Stage 2 as a function of probability p for

the High and Low risk aversion subsamples. We find clear evidence of the predicted pattern:

highly risk averse subjects sample substantially more at high than at low probabilities;

relatively risk tolerant (Low risk aversion) subjects show (somewhat weaker) evidence of

the reverse sampling pattern. Given that most subjects in our sample are risk averse this

results in an overall average tendency for subjects to sample more for larger than smaller

probabilities (see Online Appendix G for regressions using continuous measures of risk

aversion, and which confirm these patterns statistically). The results thus strongly support

the idea that inference bias is a major determinant of beliefs and therefore sampling behavior

in DfE.

Along with this evidence of inference bias, our DfE data also shows clear evidence of sam-

pling bias—the other bias driving the GAP according to our model. DfE samples are quite

small for both relatively risk averse and risk tolerant subjects: as Figure 4 shows, the av-

21As we will explain shortly, we expect behavior in DfD to also be affected by inference bias, so that this
measure is only a proxy for risk aversion as captured by the prior. The structural estimations in section 6
show that our results are robust to using a theoretically cleaner measure of risk aversion.
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erage sample for any one lottery is never greater than 6. Clearly this is far too small of

a sample to produce an accurate estimate of extreme probabilities in which the GAP is

largely concentrated. In Online Appendix G, we show that this under-sampling leads to

systematic bias in α and β in our DfE data, producing systematically biased values of p.

For small probability lotteries, our subjects gather samples that produce a smaller proba-

bility than the true one in 66% of cases overall, and an accurate sample in some 3.4% of

cases. For large probability lotteries this is reversed, with 55% of samples over-estimating

the true probability, and only 2.2% resulting in a correct estimate. Sampling bias is clearly

more severe at low than high probabilities, a predicted consequence of inference bias in our

model (see Online Appendix G for statistical evidence). The inverse probability weighting

observed in DfE is thus driven by an interaction of sampling bias and inference bias.

De-Biasing DfE. These results suggest that the GAP is driven by systematic sampling and

inference bias, both of which derive from the same source: under-sampling which produces

both sampling bias and (by generating noisy beliefs) inference bias. This in turn gives

us a first clue as to how to close (and thereby explain) the GAP: by forcing subjects to

sample more than they naturally would choose to do, we will simultaneously reduce and

perhaps even remove both sampling and inference bias. In particular, by forcing subjects to

observe a balanced sample (that correctly represents the true probabilities in frequencies,

i.e. a sample such that α
α+β = p) we remove sampling bias, and by making this sample

sufficiently large we reduce ν and thereby reduce inference bias. In the next section, we

design an experiment that will allow us to test this hypothesis.

3.1 Experiment 2: DfE+forced Treatment

Figure 5: Screenshot from the DfE+forced treatment (Experiment 2).

In Experiment 2, we attempt to eliminate the decision-experience GAP by forcing DfE

subjects to sample from each lottery (i) using a representative sample (removing scope for

sampling bias) and (ii) via a relatively large number of draws (removing scope for inference

bias). We do this using the DfE+forced treatment, pictured in Figure 6. This treatment is

identical to DfE except that subjects are required to sample all twenty “coins” from each
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bag (lottery) without replacement before making a choice between lotteries. Below each

button, the subject is shown how many times she has sampled from each bag and the total

number of draws she must make in total (set to 20 in this treatment). The radio buttons

for submitting the final lottery choice do not appear on the subject’s screen until she has

sampled all 20 coins from each bag.

In terms of the model, requiring the subject to exhaustively sample a frequentist repre-

sentation of each lottery means that subjects observe samples α, β for each lottery such

that α
α+β = p, removing scope for sampling bias. By setting the number of elements in the

frequentist representation to 20 (20 “coins” in each bag), we force subjects to sample far

more times than they are observed to do in the DfE treatment, reducing ν and therefore

reducing scope for inference bias.

In all other respects the experiment is identical to the DfD and DfE treatment. Subjects are

assigned the same 18 lotteries, repeat four of these lotteries selected at random and make

choices in these lotteries in a DfD treatment in Stage 1 before entering the DfE+forced

treatment in Stage 2. The experiment was conducted on Prolific in September of 2023

using 96 subjects.

3.2 Results

As we’ve just shown, (i) subjects in DfE sample on average fewer than five times from each

option producing highly noisy beliefs, subject to inference bias; and (ii) draw unbalanced

samples that are overly pessimistic at low and optimistic at high probabilities for the ma-

jority of subjects. Theoretically, our DfE+forced treatment in Experiment 2 resolves (i)

by quadrupling the size of the sample and resolves (ii) by balancing the composition of

the sample subjects observe. Our key prediction is that this removal of the inference and

sampling biases will reduce or eliminate the positive likelihood dependence (i.e., the reverse

probability weighting) characteristic of DfE behavior, thus narrowing the GAP.

In Panel A of Figure 6 we plot choice behavior from DfE+forced, and reproduce behavior

from DfE for comparison. As predicted, forced sampling produces a dramatic effect on be-

havior, particularly in reducing the high levels of risk taking observed for large probabilities.

Importantly, as predicted, DfE+forced does this largely by virtually eliminating likelihood

dependence, suggesting that it mostly removes both sampling and inference bias from DfE.

Regressing choice proportions observed after forced sampling on the probability of winning
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Figure 6: Effects of forced sampling in DfE on choice proportions
The figure shows the effects of forced complete sampling in DfE from both options. Panel A shows the effect of
forced sampling on choice proportions of the risky option in DfE, and compares it to DfE with free sampling.
Panel B shows the LLO function in DfE and compares it to the equivalent function in DfE+forced. The functions
shown are based on the median estimates from a Bayesian hierarchical model, which are γ = 1.64 and δ = 0.81
in DfE, and γ = 1.02 and δ = 0.87 in DfE+forced. The error bars indicate ± 1 standard error.

the prize, we find that the strong positive effect of the winning probability on choice propor-

tions, documented in DfE, disappears. With forced sampling, choice proportions no longer

significantly depend on probability, with λ = 0.080 and a CrI of [−0.020 , 0.182], which is

significantly smaller than in DfE.

Panel B of Figure 6 plots median estimates of the LLO probability weighting function

estimated based on the DfE and DfE+forced data. Clearly the inverse probability weighting

from DfE disappears altogether, replaced with a mildly convex function indicating consistent

risk-taking across probabilities. This suggests that forced sampling eliminates (or at least

severely reduces) sampling and inference bias in DfE. But comparison with estimates from

DfD (Panel A in figure 1) shows that this does not close the GAP. Indeed, a meta-analysis

of the gap between DfE+forced and DfD reveals that the GAP remains substantial as well

as statistically significant, with a meta-analytic mean of 8.4 pp and a CrI of [0.053 , 0.115]

pp. A similar failure of forced sampling to close the GAP has been documented in prior

work (Ungemach et al. 2009, Cubitt et al. 2022).22 This leaves an important question: why

doesn’t eliminating sampling and inference bias via forced sampling lead behavior in DfE

to converge to the standard probability weighting observed in DfD experiments?

22Wulff et al. (2018) use an alternative strategy whereby they only use observations in which the samples
in DfE correctly reflect the underlying probability to analyze the GAP. They conclude that the GAP remains
even using just those samples, consistent with what we find here. For a thorough discussion of attempts to
eliminate sampling bias in DfE by various means, see their discussion on pp. 151–152.
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4 Closing the Gap: Removing Bias from DfD

Forced sampling leads to dramatic changes to DfE behavior, but it does not close the

GAP. Instead of pushing choices to standard probability weighting, forced sampling causes

behavior to converge to behavior that resembles standard expected utility behavior with

moderate levels of risk aversion. The shift suggests that sampling and inference bias indeed

distort DfE behavior, but it also suggests that these biases aren’t fully responsible for the

GAP.

The key hypothesis in our paper is that the reason forced sampling in DfE doesn’t remove

the GAP is because very similar biases also afflict DfD. Probability weighting itself, we hy-

pothesize, is a consequence of inference bias (one of the two biases affecting DfE) distorting

decision making in DfD. Because of this, in order to fully close the GAP, we have to remove

biases in DfD in a manner symmetric to the way we removed biases in DfE.

A long line of research in neuroscience suggests that perception and mental representation

itself depends on a kind of neuronal sampling akin to the explicit sampling in DfE. This

is a consequence of the fact that precisely representing quantities like probabilities requires

the use of a large number of neurons and therefore comes at great cost to the brain. Gold

& Shadlen (2001) and Gold & Shadlen (2002) for instance forcefully argue that it is ef-

ficient for the brain to summarize evidence for or against an uncertain hypothesis using

a neuron (or population of neurons) in favor of the hypothesis and an “anti-neuron” (or

population of anti-neurons) summarizing the evidence against. Because efficient means of

representation are unavoidably finite, the brain tends to represent even precisely described

data imprecisely.23 The idea that such imprecise representations of probabilities, payoffs

and other quantities produces inference bias has been formalized in recent years as noisy

coding models (Natenzon 2019, Khaw et al. 2021, 2023, Vieider 2024b).

To model this for the simple binary lotteries in our experiments in a way that emphasizes

finite neuronal sampling and therefore facilitates comparisons to our DfE model, assume that

the intensity of beliefs is coded as a count of spikes or neuronal firings (“action potentials”)

in the neuron(s) α0 > 0 in favor of the prize (e.g., the better paying outcome), and a

count of spikes β0 > 0 in the anti-neuron(s) in favor of the opposite (where the subscript

23In particular, any perception can potentially be affected by some noise due to the finite mental re-
sources at our brain’s disposal, and the need to encode a multiplicity of complex stimuli using just a series
of “spikes”—the electrical firing rates or ‘action potentials’ emitted by neurons. It is thus important to
understand how neurons can efficiently encode probabilistic information to represent beliefs.
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0 simply serves to distinguish the parameters from those used above to designate literal

samples in DfE).24 We can think of the spike counts described by α0 and β0 as direct

analogues to samples in DfE – a virtual sampling process (“virtual draws”) that produces

evidence for the winning versus losing outcomes in our binary lottery. Because neuronal

resources allocated to the encoding of beliefs (the number of neurons and their spike counts)

are necessarily finite, α0 and β0 will be finite, producing immediate imprecision in beliefs

(see e.g. Heng et al. 2020 for a stylized model of neural activation along these lines) that

mirror the imprecision in finite samples in DfE. Indeed, with finite neuronal resources, this

sampling process will again be a Beta distribution with parameters α0 and β0, producing a

representation of the probability p of earning x (e.g. in lottery R described above) equal to

E[ p̂ | p ] = α0
α0+β0

(i.e.the neurally coded mean probability p̂, given the true probability p).

Because of this, all of our main conclusions regarding inference bias hold in DfD just as

in DfE: finite neuronal sampling leads to sampling noise parameterized by ν2 (which here

we will call “coding noise”), producing the same inference bias described in (5). The key

difference in DfD relative to DfE is that there is no longer scope for sampling bias. Because

the DM is directly told the true probability, it is natural to assume E[ p̂ | p ] = α0
α0+β0

= p.

We can thus directly use equation (6) and simply substitute p for p̂, because the perceived

probability will be correct on average (see online appendix A for a step-by-step derivation

and discussion).

Even though the inferred probability will be correct on average, the finite neuronal ma-

chinery means that the Beta distribution will entail some uncertainty around this unbiased

mean.25 Given this uncertainty, a Bayesian agent will continue to suffer from inference

bias in DfD, and her posterior beliefs will continue to be distorted by her prior as in (5).

Re-examining the first line of that expression, we see that it is simply equal to the popular

linear in log odds (LLO) probability weighting function (equation (1) discussed and esti-

mated in Section 2), with δ =
(

p0
1−p0

)1−γ
. Thus, noisy neuronal sampling itself serves as

an explanation for the probability weighting widely observed in DfD.26

24The efficiency of this neuronal architecture lies in the fact that the balance between neurons and anti-
neurons is robust to fluctuations in general neural activation over time (Gold & Shadlen 2001, 2002).

25Given encoding by parameters α0 and β0, infinite precision can only be achieved in the limit as α0 and
β0 jointly approach infinity. In that limit, the Beta will indeed approach a Dirac-Delta distribution having
all it probability density in a single point. Given that firing rates or spike rates of neurons are limited by
physiological factors and that a DM’s availability of neurons for a given decision task is also necessarily
limited, coding noise is an inevitable feature of neuronal representations and calculations.

26In DfD, the DM’s decisions are governed by the same discriminability expression described for DfE
(expression (6)), however it influences behavior in a different way since the DM does not make explicit
sampling decisions. In DfD, equation (6) instead simply quantifies the choice probability between the two
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Closing the Gap. If it is true that probability weighting in DfD is a result of the same

inference bias afflicting DfE, why doesn’t the removal of sampling bias in our DfE+forced

treatment lead to a closure of the GAP? Our model provides a crisp explanation: by

forcing an increase in the samples in DfE (i.e., increasing α and β) and ensuring that those

samples are balanced, we simultaneously remove both sampling and inference bias. Because

inference bias is removed simultaneously with sampling bias, DfE behavior never converges

to probability weighting (which, we hypothesize, is a consequence of sampling noise via

inference bias). This explanation for the failure to close the GAP is therefore firmly rooted

in the hypothesis that probability weighting is a consequence of inference bias: it is the

fact that probability weighting is driven by inference bias that prevents it from appearing

in DfE as samples grow large.

This explanation suggests both a method for closing the GAP, and a distinctive test for the

hypothesis that inference bias is responsible for probability weighting in classic DfD exper-

iments. By forcing subjects to sample fully redundant information in the DfD treatment in

a manner symmetric to forced sampling in DfE, we predict that (i) probability weighting

will disappear (or reduce in severity) in DfD and (ii) the GAP between description and

experience will shrink or even close.

In our model, in which probabilistic information is coded in the brain as virtual samples,

observed samples will simply be added to the ‘virtual draws’ formed mentally on the basis of

the described distribution. Defining α0, β0 as the virtual draws formed initially on the basis

of the described probability, we obtain the following updating equations after T samples:

αT = α0 +
T∑
t=1

st

βT = β0 +
T∑
t=1

(1− st),

(7)

where st = {0, 1} designates the sample obtained in draw t, which takes the value 1 when-

ever a prize x is drawn, and the value 0 whenever the lower outcome y is drawn.27 Sampled

choice options: it predicts that the DM (stochastically) chooses the risky option as a function of the positive
value of ψ and the safe option in function of its negative value. The expression ψ follows a standard normal
distribution, so that its standard normal cumulative distribution function is a Probit choice probability.
Specifically, the choice probability in (6) constitutes a Probit link function, which is entered into a Bernoulli
distribution to map it into Binary choice outcomes taking the values of 1 (choice of the risky option) or 0
(choice of the safe option).

27In practice, s may well take values that are different from (precisely) 1 and (precisely) 0, depending on
the precise nature of neuronal activation in response to sampling.
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successes and failures will thus simply be added to the virtual draws from the initial repre-

sentation.

Given that in DfD the initial representations based on the description are correct on average,

adding balanced draws (draws representative of the true distribution) will again result in a

correct representation, but will result in a reduction in coding noise and therefore inference

bias, reducing or eliminating probability weighting. This is a distinctive implication of noisy

coding explanations for probability weighting that seems inconsistent with other classical

explanations.28 Since, as we saw in Experiment 2, there is little residual evidence of either

inference or sampling bias in DfE after forced sampling, we predict that this will also close

the description-experience GAP.

4.1 Experiment 3: the DfD+Forced Sampling Treatment

In Experiment 3, we attempt to eliminate the decision-experience GAP by forcing DfD sub-

jects to redundantly sample large, representative samples from each lottery. In DfD+forced

we show subjects the same information about lotteries as we do in the DfD treatment (pic-

tured in Figure 4), but we also provide subjects the sampling tools pictured in Figure 6

below the explicit description, and force subjects to draw 20 times from each just as in

DfE+forced. Indeed, the DfD+forced treatment is identical to the DfE+forced treatment,

except that lotteries are fully described to the subject prior to, during and after sampling.

4.2 Results

Panel A of Figure 7 shows the effect of forced sampling in DfD, by plotting average choice

proportions for DfD+forced and (for comparison) DfD. As predicted, we find that forced

sampling has exactly the reverse effect on DfD as on DfE. At small probabilities, we find

a sizeable decrease in risk taking at most probabilities.29 For large probabilities, on the

other hand, risk taking increases with forced sampling in DfD. Thus, just as predicted by

noisy coding models like ours, providing completely redundant information to subjects has

28We also emphasize that although the specifics of our model make this implication easier to describe and
facilitates comparison between DfD and DfE, the prediction that redundant information like this should
reduce probability weighting likely applies to any explanation for probability weighting rooted in residual
noise in fully described probabilities (i.e., any “noisy coding” style explanation).

29The exception is p = 0.15. This is, however, in part caused by the aggregation across different values of
sure payments, c. For this particular probability, the changes across different sure amounts go in opposite
directions canceling each other out – see Online Appendix G for the plot broken down by values of c.
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Figure 7: Effects of forced sampling on choice proportions
The figure shows the effects of forced complete sampling in description-based choice. Panel A shows the effect
of forced sampling in DfD on choice proportions for different probabilities. The error bars indicate ± 1 standard
error. Panel B shows the effect of forced sampling in DfD using estimates of the LLO probability weighting
function. The figure is based on the median parameter values from a Bayesian hierarchical estimation, which
are γ = 0.80 and δ = 0.88 in DfD, and γ = 0.99 and δ = 0.75 in DfD+forced.

a sizable effect on choices in DfD.

The asymmetric effect on low and high probabilities is exactly the effect we would expect

if likelihood sensitivity in DfD (and probability weighting) was driven by inference bias

rather than conventional preferences. As such, the treatment has the effect of eliminating

standard probability weighting in DfD. As we showed in Section 2, choice proportions

are negatively related to p in DfD in regressions. Estimating the same regressions on

DfD+forced, this negative dependence of choice proportions on the probability of winning

in the lottery vanishes in the DfD+forced treatment, with λ = 0.058, with a credible interval

of [−0.039 , 0.157] indicating that likelihood-dependence is not significantly different from

0. Panel B of Figure 7 plots the LLO fit of the probability weighting function based on

the median parameter values in DfD+forced and (for reference) for the median parameter

values in standard DfD. The plot shows that standard DfD probability weighting entirely

disappears after showing subjects redundant samples, strongly supporting our hypothesis

that probability weighting in DfD is a consequence of inference bias due to coding noise.

Closing the GAP. What does the elimination of sampling and inference bias via forced

sampling (in both DfE and DfD) do to the description-experience GAP? Figure 8 combines

data from Figures 6 and 7 to answer this question. Panel A shows choice probabilities for

DfE+forced and DfD+forced, revealing that the GAP has largely disappeared (in the two

small-probability tasks in which a gap still seems to occur, it goes in opposite directions,
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so that the effects cancel each other out). Likewise, Panel B plots LLO functions based

on median parameters in each treatment and shows that estimated behavior converges.

Probability weighting and reverse probability weighting are replaced with modest, uniform

risk aversion in both DfD and DfE.
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Figure 8: Comparison of behavior after forced sampling in DfE and DfD
The figure shows the effects of forced complete sampling. Panel A shows the effect of forced sampling in DfD
and DfE on choice proportions for different probabilities. The error bars indicate ± 1 standard error. Panel B
shows the effect of forced sampling in DfD and DfE using estimates of the LLO probability weighting function.
The functions are based on the median parameter estimates from a Bayesian hierarchical model. The parameter
values are γ = 1.02 and δ = 0.87 in DfE+forced, and γ = 0.99 and δ = 0.75 in DfD+forced.

To show this more systematically (and at the choice task level), we can meta-analytically

aggregate the choice proportions across tasks. Panel A in figure 9 shows the original GAP

between description-based choice and experience-based choice with free sampling. We again

use a measure g capturing the difference in choice proportions, defined so that positive values

correspond to behavior typically documented in the literature for the standard GAP—more

risk taking in DfD than DfE for small probabilities, more risk taking in DfE than DfD for

large probabilities.

Panel A shows that in the absence of forced sampling (DfE vs. DfD from Experiment 1),

the GAP is significant in 12 out of 18 tasks when looking at the raw choice proportions,

and in 13 out of 18 tasks in the meta-analytic posterior. The exceptions in which the

GAP is not statistically significant at conventional levels are small probability tasks with

c ≥ px. Panel B compares description-based and experience-based choice proportions after

forced sampling (DfE+forced vs. DfD+forced), and shows that the GAP disappears in

these treatments. Indeed, we find no significant gap for any of the 18 choice proportions

in the meta-analytic posterior. In the one case in which we see a significant gap in the raw
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Figure 9: Meta-analysis of the GAP
Panel A shows a forest plot of the gap for our standard implementation of DfD versus DfE. Panel B shows a
forest plot of the GAP after forced sampling both from description and from experience. The light blue circles,
labeled ‘calc.’, indicate the raw differences in choice proportions in the data, g. The dark blue triangles, labeled
‘post.’, indicate the inferred posterior parameters, ĝ. The thick, dashed vertical line indicates the meta-analytic
posterior mean, ω, and the shaded rectangle indicates the 95% credible interval around that estimate.

choice proportions, this gap goes in the opposite direction of the standard GAP. At 0.9 pp

(95% credible interval of [−2.3 , 4.1] pp), the meta-analytic posterior mean is arbitrarily

close to 0. The GAP has closed.

We can further examine the effect of forced sampling by restricting our attention to the

6 ‘standard tasks’ in which the GAP is strongest to start with (and which represent the

typical type of task used in the early DfE literature, with px > c). Figure 10 shows the meta-

analytic evidence. Panel A shows the usual GAP between DfD and DfE. It is significant

in all but one task in the raw data, and in all of them in the meta-analytic posterior. The

meta-analytic mean indicates an average gap of 18.6 pp in these tasks. Panel B shows

the same tasks for DfD with forced sampling versus DfE with forced sampling. None of

the raw choice proportions is significantly different from 0, nor is any of the meta-analytic
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Figure 10: Meta-analysis of the GAP, ‘standard tasks’
Panel A shows the gap for a standard implementation of DfD versus DfE. Panel B shows a forest plot of the
GAP after forced sampling both from description and from experience. The light blue circles, labeled ‘calc.’,
indicate the raw differences in choice proportions in the data, g. The dark blue triangles, labeled ‘post.’, indicate
the inferred posterior parameters, ĝ. The thick dashed line indicates the meta-analytic posterior mean, µ, and
the shaded rectangle indicates the 95% credible interval around that estimate.

posterior means, ĝ. What’s more, the GAP falls from 18.6 to 1.4 percentage points, meaning

the meta-analytic mean falls once more arbitrarily close to (and statistically insignificantly

different from) 0. Once more, the GAP has closed.

Our results thus provide strong evidence that the decision-experience GAP is a consequence

of the two biases we expect forced sampling to remove. First, inference bias creates classic

probability weighting in DfD. Second, sampling bias (intensified by inference bias) creates

underweighting of rare events, creating the inverse of probability weighting in DfE. Forced

sampling removes each of these biases, generating inverse responses in DfE and DfD that

drive behaviors in the two settings together, removing the GAP.

5 Structural Estimation: The Influence of Coding Noise

Finally, we use structural estimation to more deeply assess the hypothesis that both prob-

ability weighting and the description-experience gap are a consequence of cognitive noise –

and that our treatments eliminate these patterns by eliminating this noise. We structurally

estimate our model from choice data based on our discriminability expression (6). The key

parameter driving both probability weighting and the GAP in our model (and, therefore,

our focus in this section) is γ, the weight the DM puts on her perception of the log-odds

in the decision process. We will refer to this as “likelihood-discriminability,” mirroring the
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name given the equivalent parameter in the LLO function, “likelihood-sensitivity.” In the

model, γ is an inverse function of coding noise: the smaller coding noise ν becomes, the

closer γ will come to 1, producing perfect discriminability of log-odds and an elimination

of inference bias (and hence of probability weighting). Importantly, this parameter is es-

timated, in part, using inconsistencies in subjects’ choices across repeated instances of the

same task (recall, four random tasks were repeated for each subject) which give us direct,

subject-level measures of behavioral noise. This analysis therefore relies on new data, not

reported in the previous analysis.

We estimate the model using Bayesian hierarchical techniques, which optimally combine

individual-level information with group-level evidence (Gelman & Hill 2006, Gelman et al.

2014). This allows us to study distributions of individual-level parameters based on rela-

tively few decision tasks (details and code are provided in Online Appendix G). We normal-

ize the variance of the prior to σ = 1 throughout, so that coding noise is measured relative

to the variance of the prior, ν/σ. This is done without loss of generality and to improve

comparability across studies, simply leading to a rescaling of the equation (see Natenzon

2019 for an equivalent simplification).30 We execute tests on distributional differences and

correlations in individual-level parameters based on the means of the individual-level pos-

teriors throughout. All comparisons are within-subject, leveraging our two stage design,

unless specified otherwise. We report four main findings:

First, we find that, conditional on the information subjects have about probabilities, esti-

mates of γ indicate strong (and similar) levels of noisy coding and inference bias in DfD

and DfE, with γ estimates well below the unbiased benchmark of 1. To estimate γ in a

way that makes DfE and DfD estimates comparable, we estimate the model in DfE on the

actually experienced probabilities (i.e., probabilities implied by the sample subjects have

drawn), rather than the lottery’s true probabilities.31 Because of this, we must make an

assumption on how subjects perceive the log cost-benefit ratio in cases in which the subject

fails to sample both lottery outcomes before making a choice. Panel A in Figure 11 shows

30We estimate the model on choice data while leveraging our within-subject design. That is, we estimate
the model using the data from both treatments, and assuming that the parameters governing the prior
remain the same across the two treatments, while leaving the other model parameters free to vary. This
allows us to maximize the informative content of our sparse choice stimuli. See Online Appendix G for
details.

31We assume throughout that the initial Beta parameters, before any samples are observed, are α = β =
0.1. This assumption derives from our general inference framework, based on a diffuse Dirichlet space – see
Online Appendix A.1 for details. While values smaller than 1 are plausible (they imply that subjects expect
relatively few outcomes in our general inference framework), our results are not sensitive to variations of
this value within that range.
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the cumulative distribution function of individual-level γ estimates under the assumption

that DMs are “naive” in the sense that they judge costs and benefits to be equal in such

cases. In panel B, we instead assume DMs are sophisticated in the sense that they realize

that larger log-odds imply larger log cost-benefits; the correlation measuring the degree of

sophistication thus must be estimated as an endogenous parameter (see Online Appendix

G for details and additional results).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.4 0.6 0.8 1.0
likelihood−discriminability

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

Legend

DfD

DfE

A

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.2 0.4 0.6 0.8 1.0
likelihood−discriminability

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

Legend

DfD

DfE

B

Figure 11: Structural estimates, DfD versus DfE
The figure shows structural estimates of the model parameters. Panel A compares likelihood-discriminability
γ in DfD and DfE for a naive decision maker, who assumes costs and benefits to be equal when one of the
outcomes has not been observed. Panel B compares likelihood-discriminability, γ, for a sophisticated DM, who
(correctly) infers that log-odds and log costs-benefits are correlated in the choice problems. The correlation
coefficient is thereby estimated endogenously from the data (see Online Appendix G for details).

Regardless of the approach taken, two findings stand out from Figure 11. First, in both

DfD and DfE, γ falls well below the unbiased benchmark of 1, suggesting a strong role for

inference bias in both settings as predicted by our model. Second, the distributions of γ

estimates are similar in both DfD and DfE.32 This is important because our model explains

the GAP between these settings not via differences in γ but rather via the very different

effects the model predicts γ has in DfD vs. DfE environments. The results therefore assure

us that the model parsimoniously explains differences in lottery choices across treatments,

conditional on the information available to subjects.

Second, we show that forced sampling in DfD and DfE results in a sharp increase in γ

towards 1 (the unbiased benchmark), suggesting that the intervention influences behavior

(as predicted by the model) by severely reducing coding noise and with it scope for inference

32For the naive estimates pictured in panel A, likelihood-discriminability γ is somewhat smaller in DfE
than in DfD (p = 0.006). For the sophisticated estimates in panel B, the two distributions produce roughly
equal deviations above and below 0.5, and are not significantly different (p = 0.979).
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Figure 12: Structural estimates, DfD vs DfD+forced and DfE vs DfE+forced
The figure shows structural estimates of likelihood-discriminability γ. Panel A compares likelihood-
discriminability in DfE and DfE+forced. Panel B compares likelihood-discriminability in DfD and DfD+forced.

bias. In panel A and B of Figure 12 respectively we plot CDFs of estimated individual-level

mean γ estimates in DfE33 and DfD with and without forced sampling.34 In both cases,

forced sampling causes a sharp rightward shift in the γ parameter, with medians in both

cases of about 0.95 suggesting a near elimination of coding noise and inference bias.35

Third, we show that forced sampling in DfD and DfE – which, recall, caused a convergence

in behavior between the two treatments – also causes a convergence in γ. This suggests

(as our model predicts) a causal linkage between the two findings: joint convergence of

γ in the two treatments towards 1 (signalling the disappearance of inference bias) causes

lottery choice patterns to converge, suggesting (as predicted by the model) that coding

noise was responsible for their initial divergence. Panel A of Figure 13 directly compares

γ in DfD+forced and DfE+forced. Over most of the distribution, the panel shows that

discriminability converges across the two treatments, suggesting that subjects are similarly

free of inference bias in the two settings – a finding that matches the similar revealed risk

aversion in choices in the two settings. Indeed, non-parameteric tests detect no significant

difference between the two distributions (p = 0.376).36

33In DfE we plot estimates that assume subjects make sophisticated inferences about the cost-benefit
ratio, as discussed above.

34For this analysis, we use a between-subject comparison in both cases since DfE vs DfE+forced can only
be compared between subjects; in DfD, replacing this with within-subject comparisons yields very similar
results (cfr. Online Appendix G).

35Estimates also reveal a sharp reduction in cross-subject variance. This too is a prediction of the model,
since the treatment is predicted to have similar impacts on both initially high and low noise subjects.

36Nonetheless, as is clear from the graph, discriminability is somewhat lower in the left hand tail of the
DfE distribution. We hypothesize that this is due to limitations on subjects’ memory, highlighting the value
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Figure 13: Effects of forced sampling, Structural estimates
The figure shows structural estimates of the model parameters. Panel A directly compares likelihood-
discriminability γ in DfD+forced and DfE+forced. Panel B compares likelihood-discriminability, γ, in DfD
without and with forced sampling. Panel B plots coding noise in first stage DfD against the change in likelihood-
disciminability when forced sampling is introduced.

Finally, Panel B of Figure 13 illustrates the reason for this effect by plotting coding noise ν

(measured in the DfD choices in Stage 1 of the experiment) against the difference between

γ in DfD and DfD+forced (defined as γ2 − γ1, with subscripts indicating the stage of the

experiment), exploiting our within-subject design. The figure shows clearly that the effect

of sampling is most pronounced for those subjects who had the largest coding noise to begin

with. These results strongly support an additional prediction of the model: that sampling

should have the strongest effect on subjects who have relatively high coding noise to start

with (i.e., relatively small ‘spike counts’ α0 and β0). This is a consequence of the fact that

the reduction in coding noise decreases at a decreasing rate with further samples (that is,

the smaller α0 and β0, the larger the effect of adding actual samples based on equation 7).

The figure thus shows in a particularly sharp way how strong the effect of forced sampling

is on likelihood-discriminability in the DfD treatment.

6 Robustness: Voluntary Sampling in DfD

Finally, we report a fourth experiment designed to test two additional implications of our

model, providing a robustness check for our explanation for probability weighting and the

GAP. First, noisy coding explanations for probability weighting predict that subjects re-

to subjects of having an explicit description of the outcomes and probabilities on the screen (in DfD+forced)
to guard against inattention and working memory limitations.
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main, in an important sense, uncertain about the properties of fully described lotteries.

Because of this, subjects should not only be responsive to additional information – they

should also demand such information to make their beliefs more precise. Second, our model

suggests a second way to close the GAP beyond the one pursued in Experiments 2 and 3.

Instead of removing the GAP by removing inference bias (in DfE and DfD) and sampling

bias (in DfE) via forced sampling, we can instead introduce the same kind of sampling bias

afflicting DfE to DfD by allowing subjects in DfD to (if they so choose) under-sample their

options.

We test these implications using our DfD+free treatment. This treatment simply combines

the sources of information from our DfD and DfE treatments: subjects in DfD+free are

explicitly told the properties of their lottery options (as in DfD) but can (if they choose)

sample from each of these lotteries randomly as much (or as little) as they like (as in DfE).

We ran this experiment on Prolific with 101 subjects in September 2023 using the exactly

same parameters and structure used in our other treatments. We provide details of the

results in Online Appendix C and here highlight two main effects of this treatment.

First, we find strong evidence that subjects do in fact voluntarily seek out redundant infor-

mation on the properties of fully-described lotteries. This seems to be particularly strong

evidence that subjects (as noisy coding models like ours predict) are residually uncertain

about the properties of their choice options. The average subject takes just under two sam-

ples, on average, but takes more than 4 in early rounds and some subjects take as many as

9 on average. More than 90% of subjects sample at least once in this treatment. However,

as in DfE, the sampling subjects conduct is far too modest to generate anything other than

highly biased information.

Second, and as a result of this, we find that this sampling causes DfD+free behavior to

converge sharply towards DfE behavior, closing the GAP in a second way. Free sampling in

DfD+free produces a severe change in behavior relative to DfD, causing a complete reversal

in the direction of likelihood dependence. In DfD+free subjects take even more risk at

higher probabilities than in DfD+forced, thus converging towards behavior in DfE. Prob-

ability weighting thus reverses in DfD+free, suggesting that the inference bias suffered by

subjects in DfD becomes overwhelmed by sampling bias in DfD+free. There is some appar-

ent difference between DfD+free and DfE at high probabilities (and likelihood-dependence

in DfD+free, albeit positive, is significantly weaker than in DfE), suggesting that subjects’

beliefs continue to be influenced by the explicit provision of descriptive information. How-
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ever, we cannot meta-analytically reject the hypotheses that simply giving subjects the

option to sample in DfD is sufficient to eliminate the description-experience GAP (details

in Online Appendix C).

This treatment tests especially distinctive implications of our explanation for probability

weighting and the GAP. After all, it seems highly unlikely under any explanation other

than noisy coding that subjects would voluntarily seek out additional information in the

DfD treatment. The fact that they do seems to directly suggest that subjects are in some

important sense uncertain of the information explicitly given to them. Likewise, it is hard

to explain why subjects provided unbiased initial information should be susceptible to bias

from under-sampling, unless those subjects have a noisy understanding of what that initial

information represents. Because of this, we view these results as strong additional sup-

port for our hypothesis that probability weighting and the GAP are rooted in cognitive

imprecision.

7 Discussion

In this paper we show that probability weighting and the description-experience gap –

two key phenomena in the lottery choice literature – are a consequence of the incomplete

and imprecise ways decision makers perceive and represent information. Reducing the

imprecision of subjects’ beliefs by forcing them to observe redundant information causes

probability weighting to disappear and closes the description-experience gap. In addition

to shedding significant light on a key mystery in the literature, we believe there are two

broader implications of our findings.

First, our results provide some of the most direct (and therefore strongest) evidence to date

of “noisy coding” explanations for non-standard behaviors like probability weighting (Zhang

et al. 2020, Khaw et al. 2023, Frydman & Jin 2023, Vieider 2024b). Noisy coding models

hypothesize that descriptive failures of benchmark models like expected utility theory (von

Neumann & Morgenstern 1944, Savage 1954) and exponential discounting (Samuelson 1937)

are a consequence, not of non-standard preferences, but rather of what we have called in-

ference bias, driven by limitations in the way the brain encodes information. In particular

these models hypothesize that decision making is subject to the same kinds of Bayesian

distortions that have been shown for decades by psychologists to shape perception: noisily

processed valuations are systematically distorted by decision makers’ prior beliefs, a form
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of noise-driven bias that can account for a number of behavioral anomalies. Our empirical

approach is particularly direct because it relies on a direct manipulation of the represen-

tational noise that lies at the root of noisy coding models. By providing subjects with

completely redundant information, we are able to severely reduce this noise and thereby

cause probability weighting to disappear – a treatment effect that is difficult to account for

via alternative explanations that are not similarly rooted in cognitive imprecision.

Second, because our findings show that valuations are fundamentally shaped by cognitive

frictions, they call into question the common interpretation of behavioral anomalies like

probability weighting (or its reversal in decision from experience) as expressions of sub-

jects’ welfare-relevant preferences for risk. When we eliminate noise in subjects’ beliefs (in

DfD) and remove scope for sampling bias (in DfE), we find that probability weighting and

its reversal both disappear. What they are replaced with is strikingly neoclassical: subjects

in both DfD and DfE show no evidence of likelihood dependence and instead show evidence

of modest risk aversion that is broadly consistent with expected utility theory. Our results

therefore suggest that we should be cautious in interpreting anomalous behavior in domains

like lottery choice as rejections of standard models of preferences like expected utility the-

ory. Our results suggest that even the simplest choice problems are powerfully shaped by

limitations in human cognition like those expressed by noisy coding models. This has obvi-

ous implications for our normative interpretations of anomolous behaviors like probability

weighting, and for the policies we design in response to them.
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A Model derivation

A.1 A general inference model

In Decisions from Experience (DfE), subjects need not only learn the outcomes and under-

lying probabilities, but also the whole structure of the decision problem (i.e., the number

of outcomes in the lottery’s support). In the body of the paper we assume away this com-

ponent of the inference problem for simplicity and to focus our discussion on the influence

of sampling and inference bias. Here, for completeness, we propose a stylized model of

how such higher order learning could take place based on the sort of sampling from the

two options that occurs in DfE. We argue that expanding the model in this way has little

qualitative impact on our findings.

We start by discussing the inference process. Assume a DM believes that outcomes will range

from 0 to some upper limit u, outcomes beyond which are not considered plausible.37 Take

two objective probability distributions over all outcomes underlying the two choice options,

{p0, p1, ..., pu} and {q0, q1, ..., qu}, where subscripts indicate monetary outcomes. In DfE,

DMs will infer the probability distributions from the draws they observe. Let the initial

likelihood at time t = 0, before any draws are taken, be encoded in two u+ 1-dimensional

Dirichlet distributions, DA(πj) ∝
∏u

j=0 p̃j
πj−1 and DB(ωj) ∝

∏u
j=0 q̃j

ωj−1, where p̃i ≜
πi∑
j πj

and q̃i ≜
ωi∑
j ωj

represent the subjective expectations of the probabilities attributed

to an outcome i in the two choice options A and B. Given the ex ante exchangeability of

the two choice options, the two Dirichlets will have the same parameters at time t = 0 . We

assume that DMs consider any given outcome as equally likely in the two choice options, so

that πi = ωi ∀ i at t = 0. This assumption directly follows from the exchangeability of the

two options before any draws have been observed, and is implemented in our experiment

by randomizing the risky and safe options in positions A and B.

We assume that what matters for decisions is the direct comparison between the two choice

options. To capture this in our model, we map the inferences based on the Dirichlets

encoding draws from the two choice options into a comparative Dirichlet which entails a

statewise comparison between to two options. That is, what matters for choices are events

in which one option pays a given outcome, while the other option pays a different outcome.

In our experiment, these will be the events under which the risky option pays x while the

37In principle, u can take any value, as long as it is finite. In our experiment, we tell subjects beforehand
that all outcomes will range between $0 and $ 35 inclusive, thus setting their expectations about this range.
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safe option pays c < x, and the event under which the risky option pays y while the safe

option pays c > y (see below for a generalization). The probabilities of the comparative

events e1 (obtain x > c rather than c) and e2 (obtain c rather than y < c) can now be

obtained from the single-state Dirichlets DA(πj) and DB(ωj) defined for the two options,

since P [e1] = P [x ∩ c] = p̃x × p̃c and P [e2] = P [y ∩ c] = p̃y × p̃c. Given that for finite

samples p̃c < 1 and p̃x + p̃y < 1, the inferred probabilities will generally be subadditive,

that is, P [e1] + P [e2] ≤ 1 (with 1 being the limiting case as samples tend to infinity). This

implies that we can express the subjective beliefs in the comparative states of the world

once again by a Dirichlet, D(δi) =
∏u

i=1 P [ei]
λδ̂i−1, where λ ≜

∑u
i=1 δi is the concentration

of the new Dirichlet, and δ̂i ≜ δi/λ captures the mean belief about a given state i. While

some probability mass will thus remain attributed to ‘non-observed outcomes’, this part

will drop out of the main choice equation below.

This justifies the assumption of the Beta distribution in the main text: while the latter

imposes additivity in p̂x and p̂y, that assumption serves to simplify our discussion, but has

no substantive implications for our conclusions (given that the non-observed states receiving

the remaining probability mass drop out of the discriminability equation). If, say, a third

outcome from the risky option were to be observed at some point, this would add a new

comparative state to the comparison (see below). In the text we further discussed inference

bias in terms of the samples taken from the risky option only. More generally, however, the

samples from the safe option will also count. While a precise closed-form solution does not

exist for that case, we can approximate the samples by the total samples for each state,

where the samples from the safe option are simply added to the samples indicating each

comparative sample in the sum of the trigamma function. This means that our discussion

in the main text may quantitatively underestimate the samples, but that this more general

case will not qualitatively affect any of the conclusions drawn.

In the main text, we implicitly assume that subjects know which of the two options is

the risky one and which the safe. In reality, subjects need to infer this from the samples

they take. We make three assumptions in this regard. The first, and most substantively

relevant, is that subjects make inferences on the choice environment (including potentially

the intentions of the experimenter). This entails that choices between two non-degenerate

options are deemed extremely unlikely. Practically, this entails that noise will remain high

until a plausible set of outcomes has been observed (Figure 14 below illustrates this for our

experimental stimuli).38 The second assumption is that we assume the initial parameters

38This assumption seems particularly defensible in our DfE experiments, since all subjects assigned to this
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of the two choice option Dirichlets to be sparse, i.e. πi, ωi ≪ 1 ∀ i. This assumption implies

that subjects do not expect a very diffuse probability distribution with many different

outcomes. Practically, this helps explain why samples are relatively small, since it keeps

the probability mass assigned to unobserved outcomes low in the comparative Dirichlet.

An additional assumption in the main text is that subjects can infer which of the two options

is the risky one. This obtains trivially once a subject has observed all three outcomes used in

our experiment (the two in the risky option, and the one in the safe option, which constitute

a ‘plausible minimal outcome set’ inasmuch as they indicate a non-degenerate choice, or

equivalently, they map into two comparative states with a meaningful tradeoff between log-

odds and log-cost benefits). This indeed follows directly from the two assumptions above:

that subjects expect non-degenerate choices, and that the initial parameters are sparse

(meaning that they do not necessarily expect more outcomes once they have observed a

plausible outcome set). The inference is somewhat less trivial as long as only one outcome

has been observed from each choice option.

We illustrate this based on the choice options we provide in the experiment. For small

probabilities, subjects are overwhelmingly likely to observe the lower outcome y. Given

that in our experiment y is always equal to 0, and that we tell subjects that they will only

ever face non-negative amounts, this immediately identifies this choice option as the risky

one. For large probabilities, where subjects may observe two strictly positive amounts from

the two options, this is less obvious. We thus furthermore assume that the parameters of

the option-specific Dirichlets before any samples are taken will be characterized by sparsity

increasing in outcomes. That is, for any j > i, where the two indices are non-negative

outcomes, ωj = πj ≤ πi = ωj at time t = 0, before any samples have been taken. In practice,

this entails that subjects consider smaller outcomes more likely than larger outcomes. Notice

that this is the equivalent of a pessimistic prior for the inference process, and that it is thus

fully coherent with both our model and our empirical results.39

treatment have all finished making dozens of binary DfD choices for lotteries with one degenerate and one
non-degenerate lottery.

39In principle, this inference process could be modelled as a probabilistic process resulting in stochastic
assessments of the riskiness of the two choice options after each sample. Such a model would follow a very
similar structure as our discriminability model, and we do thus not formalize it here. Such a model would
be most relevant for large probability lotteries in cases where only one outcome has been observed from
each option. The notion that subjects infer the structure of such choice problems from sampling draws is
indeed supported by the observation that samples from the safe option increase in the objective probability
of winning for both risk averse and risk seeking subjects in our data.
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A.2 Noisy log-odds representation

In our actual experiment, subjects will experience exactly 1 outcome from the sure option,

and no more than 2 from the risky option. We can thus use the 2-dimensional special case

of the comparative Dirichlet distribution discussed above – the Beta distribution (see above

for an explicit discussion of this simplifying assumption). In particular, the parameter α

will encode the ‘good state’, in which the lottery pays a prize x > c, whereas β will encode

the ‘bad state’, under which the lottery pays an outcome y < c. The perceived or sampled

probability of the good state favoring the lottery will thus be E[p̂] = α
α+β .

We start from an optimal choice rule entailing expected value maximization. The DM will

thus choose the lottery over the sure amount whenever p̂x + (1 − p̂)y > c, or equivalently

whenever

ln

(
p̂

1− p̂

)
> ln

(
c− y

x− c

)
.

The transformation into log-odd space is convenient for computational reasons, but oth-

erwise inconsequential (see Vieider 2024b, for an alternative derivation). The choice rule

entails that the log-odds in favor of the lottery will be traded off against the log of the ratio

of costs (c−y, potentially get the lower outcome y when c could have been had) and benefits

(x−c; obtain the prize x instead of the lower sure amount c). Here, we will assume without

loss of generality that the log cost-benefits are perceived objectively. This is a simplifying

assumption that allows us to focus on the likelihood dimension, where most of the action

takes place. It is straightforward to generalize the derivation to include the noisy coding of

costs and benefits as well (cfr. Vieider 2024b).

The mean of the sampled log-odds can simply be derived from the two parameters containing

the counts of successes and failures:

E
[
ln

(
p̂

1− p̂

)]
= ln

(
α

β

)
Given limited samples, however, even samples that are accurate on average will contain

some error on single draws, driven by natural sampling variation around the true mean.

Averaging across all probabilities, we will thus observe

ln

(
α

β

)
= ln

(
p

1− p

)
+ ε,

which, following Atchison & Shen (1980), could equivalently be written as the difference of
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the digamma functions of the two parameters, 𭟋(α)−𭟋(β).

Log-odds tend to follow approximately normal distributions, giving rise to a logit-normal

(Atchison & Shen 1980). This suggests that ε ∼ N (0, ν2). The error variance ν2, in turn,

again derives from the properties of the logit-normal distribution, and is given by the sum

of trigamma functions of the two parameters, i.e. ν2 = 𭟋′(α) +𭟋′(β).

A.3 Sampling bias and inference bias

We can illustrate the properties of these equations based on some examples. In DfE, the

DM starts from a position of complete ignorance, i.e. zero discriminability. As they start

sampling from the two options, they update the parameters α and β of the Beta distribu-

tion. This has two effects. One, the DM draws inferences about the underlying log-odds

generating the observations. Two, as draws accumulate, uncertainty about the inferred

log-odds is increasingly reduced.
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nu = 10.08

−20 −10 0 10 20
likelihood log−odds distribution

Legend
delta1 = 0.1 , delta2 = 0.1
delta1 = 5.1 , delta2 = 0.1

A
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nu = 1.28
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likelihood log−odds distribution

Legend
delta1 = 0.1 , delta2 = 0.1
delta1 = 5.1 , delta2 = 0.1
delta1 = 5.1 , delta2 = 1.1

B

Figure 14: Inferences on log-odds: examples
The figure shows inferences on log-odds after a small number of draws. The dashed vertiical line indicates the
true log-odds.

Figure 14 illustrates the process with two examples. Panel A shows the case of 5 samples

being drawn from the risky option, all of which yield x. Starting from initial comparative

Dirichlet parameters of 0.1, the true log-odds are now substantially over-estimated. Coding

noise, however, remains large because the DM rightly infers that they have not observed all

possible outcomes yet (i.e., the experimenter is unlikely to confront them with a degenerate

choice – something that is implicit in the logit-normal formulation we use). This illustrates

49



the importance of our assumption that there must be a minimum set of plasible outcomes,

i.e. at least two states of nature that entail a meaningful tradeoff.

Panel B illustrates what happens when an outcome y is drawn from the risky option.

The true log-odds are now somewhat under -estimated. At the same time, confidence in

the inferred log-odds has increased dramatically. This illustrated the inter-play between

sampling bias and inference bias in our setting. Inference bias thereby is a function of

whether both outcomes from the risky option have been observed, and also of how many

samples they are based on. As samples increase, both inference bias and sampling bias will

thus decrease.

Optimal Combination with Bayesian prior

Given the noise in inferences, it will be optimal to combine the observations with a Bayesian

prior. The optimality of this operation derives from the fact that – even though it will

introduce systematic bias into the estimates under the form of regression to the mean – it

will minimize the mean squared error across many estimates (see Ma et al. 2023, chapter

4, for an illustration). The reason for this is that the reduction in variance of the estimator

will more than make up for the introduction of bias.

The objective for the mind now becomes to infer the log-odds from the underlying samples

(whether they be true samples or virtual/neural samples – we drop the subscripts here and

derive the equation just once). The inference problem for any given choice task will thus

be as follows:

E
[
ln

(
p

1− p

) ∣∣α, β] =
σ2

σ2 + ν2
ln

(
α

β

)
+

ν2

σ2 + ν2
µ,

where we redefine µ = ln
(

p0
1−p0

)
in the main text, and where the Baysian evidence weight

or “likelihood-discriminability” parameter is given by γ ≜ σ2

σ2+ν2
= 1

1+ν2/σ2
. A step-by-step

derivation of this equation can be found in Vieider (2024a), chapter 2.

In DfD, the “virtual draws” encoded in α and β (referred to as α0 and β0 in the main text)

are unobservable. We can, however, estimate the equation by aggregating across multiple

similar probabilities. This will yield the expectation over repeated stimuli of the posterior

expectation above, which takes the following form:

E
[
E
[
ln

(
p

1− p

) ∣∣α, β] ∣∣ p] =
σ2

σ2 + ν2
ln

(
p

1− p

)
+

ν2

σ2 + ν2
µ,
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which now allows us to substitute the true log-odds for the sampled log-odds. Choice to

choice fluctuations in the samples will be reflected in the variance of the distribution, which

takes the form γ2ν2 = σ4ν2

(σ2+ν2)2
.

Proof. The proof exploits the well-known property of the normal distribution whereby z ∼
N (ẑ, τ2) implies bz + a ∼ N (bẑ + a, b2τ2). To obtain the response distribution above, let

ln
(
α
β

)
= z, σ2

σ2+ν2
= b, ν2

σ2+ν2
µ = b, ln

(
p

1−p

)
= ẑ, and ν = τ .

Note that the problem does not change in any substantive way if we abandon the assumption

of draws correctly reflecting the underlying distribution on average when real samples are

taken in DfE. We then simply change the objective probability p to the sampled probability

p̂ in the equations above. Sampling bias in p̂ will then occur on top of the inference bias,

which still results in regression to the mean of the prior, just like represented above.

Stochastic choice rule

We can now trade off the inferred log-odds, as derived above, against the log-cost benefits, as

suggested by our optimal choice rule. Letting µ ≜ ln
(

p0
1−p0

)
, we obtain δ = ln

(
p0

1−p0

)1−γ
,

and by extension, θ = δ−1 = ln(1−p0
p0

)1−γ . Putting everything on the scale of the standard

deviation of the response distribution derived in the previous section yields the z-score

describing the choice probability of the lottery:

pr[(x, p; y) ≻ c] = Φ

γ ln
(

p
1−p

)
− ln

(
c−y
x−c

)
− ln(θ)

γ ν

 ,
where Φ is the standard normal cumulative distribution function. In DfD (as well as

DfD+forced and DfE+forced), the probability will correspond to the correct one, and the

model can thus be simply estimated on choice data by plugging the probit link function

above into a Bernuoulli distribution (see below).

In DfE, we need to slightly amend the function above. In particular, we will now substitute

sampled probabilities p̂ for the true probabilities above (adding a constant to both numerator

and denominator to make sure it is defined—see discussion of the inference process above).

An additional assumption concerns the log cost-benefit ratio when either x , y, or c have

not yet been observed. The simplest assumption is that of a “naive” decision maker, who

assumes the ratio to be 1 in that case (and hence its logarithm to be 0). However, this
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is just a special case of what a more sophisticated decision maker would do. Multiplying

the log cost-benefit ratio by an additional parameter ρ, conditional on one of the outcomes

not yet having been observed, allows for a more flexible specification whereby the DMs can

(correctly) infer a positive correlation between log-odds and log cost-benefits. The “naive”

DM discussed above is then just a special case for whom ρ = 0.

N-dimensional generalization

The general inference framework discussed at the beginning of this section is fully general.

While we have described it for the particular case of comparisons used in our experiment,

it can just as easily be applied to comparison between multi-outcome lotteries.

The inference framework introduced above remains directly applicable, with the two option-

specific Dirichlet simply counting instances of different outcomes. We do, however, need

to make an additional assumption when it comes to the construction of the comparative

Dirichlet: our assumption here is simply that subjects order the outcomes in each Dirichlet

by size in order to come up with the comparative distribution. The comparative Dirichlet

is then constructed over k comparative states constructed based on the ranked outcomes.

Take two lotteries offering outcomes xxx = {x1, ..., xk} and yyy = {y1, ..., yk} under the com-

parative events e1, ..., ek, where each comparative event is characterized by a probability

p̂i, which could be different from the true underlying probability pi. We assume that the

outcome are ordered such that x1 ≥ x2 ≥ ... ≥ xk and y1 ≥ y2 ≥ ... ≥ yk. We further as-

sume that xxx is riskier than yyy in the sense of having wider spread or variance (entailing that

xk < yk).
40 The optimal choice rule , which once again entais expected value maximization,

takes the following form:
k−1∑
i=1

p̂i
p̂k

(xi − yi)

(yi − xk)
> 1, (8)

which sums the relative costs and benefits of the two lotteries. This equation has been used

for instance in signal detection theory (Green et al. 1966). The reference outcome, here

taken to be the worst outcome xk, is arbitrary, since the choice rule enshrines within it all

pairwise comparisons (similar to what happens in multinomial logits). To see this, let Vik ≜
P [ei]
P [ek]

(xi−yi)
(yi−xk)

. It is then straightforward to derive any binary comparison as Vij = Vik/Vjk.

This expression thus maps the k-dimensional simplex into a (k-1)-dimensional log-odds

40The last assumption is not essential, but it ensures that the equation such as written here below is
well-defined without the introduction of additional indexing.
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representation.

The log-odds of each single state, now given by ln
(

p̂i
p̂k

)
, can be treated exactly as described

above. Following Vieider (2024b) and assuming that the different states will be processed

in parallel in a neural network, the stochastic choice equation then takes the following form:

P [xxx ≻ yyy] =
k−1∑
i=1

Φ

γ × ln
(

p̂i
p̂k]

)
+ 1× ln

(
1(xi−yi)
yi−xk

)
− ln(θ)

(k − 1) ν × γ

 .
where 1 = 1 if xi − yi > 0 and else 1 = −1, thus assuring that the logarithm is defined

(we implicitly assume that the lowest outcome in the safer option is larger than the lowest

outcome in the risky option, so that yi > xk ∀ i). The multiplication of the log relative-

outcome ratio by 1 further makes sure that this ratio enters with the appropriate sign, since

it could now favor either choice option in any given state i < k.

B Experiments

Choice stimuli

We selected our choice stimuli from those in the early DfE literature (Hertwig et al. 2004),

but generalized them so as to allow us to structurally estimate our model, and to obtain a

more balanced picture of the behavior. We assured identification of the structural estima-

tions using simulations (R code available upon request), which allowed us to find the optimal

compromise between number and type of task and the length of the experiment. The lim-

iting factor derived in particular from the forced sampling experiments, where subjects had

to take 40 samples by tasks, as well as expressing their final choice.

We thus chose 6 different lotteries—3 with a small probability, and 3 with a large probability

of winning. We then obtained three choice tasks by lottery by setting the sure amount c

equal to the expected value, and by adding or subtracting a fixed amount. This provides

some valuable variation for the structural estimations, and results in the following 18 unique

tasks (4 randomly selected ones of which were repeated in the experiment):
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Table 1: Choice tasks

small p large p

(31,0.10) vs. 2.8 (4,0.80) vs. 3.0
(31,0.10) vs. 3.2 (4,0.80) vs. 3.2
(31,0.10) vs. 3.6 (4,0.80) vs. 3.4
(10,0.15) vs. 1.2 (8,0.85) vs. 6.6
(10,0.15) vs. 1.5 (8,0.85) vs. 6.8
(10,0.15) vs. 1.8 (8,0.85) vs. 7.0
(16,0.20) vs. 2.9 (10,0.90) vs. 8.8
(16,0.20) vs. 3.2 (10,0.90) vs. 9.0
(16,0.20) vs. 3.5 (10,0.90) vs. 9.2

Choice tasks are describes as usual, with (x, p) designating a lottery providing a prize x
with probability p or else 0, and c designating the sure amount.

C Experiment 4: the DfD+free Treatment

Forcing subjects to sample from described options shows dramatic effects on behavior. This

raises the question of whether subjects will sample voluntarily when given a description of

the options, even when they are not forced to do so. We designed experiment 4 to answer

this question by introducing a DfD+free treatment. We show subjects the same information

about lotteries as we do in the DfD treatment, but we also provide subjects the sampling

tools just like in experiment 3. Other than in experiment 3, however, the radio buttons

to indicate a choice appear from the very start. Subjects are told explicitly that they can

sample if they want to but that they do not have to, and that they can also indicate their

decision directly without sampling. We ran this treatment on Prolific with 101 subjects in

September 2023.

C.1 Results

Subjects do indeed sample when given the possibility to do so, even when choice options

are fully described. Across subjects and tasks, they take an average of 1.74 samples, almost

all of which are taken from the risky option. This average, however, hides significant

heterogeneity within it. Some subjects take as many as 9 samples per task on average,

whereas others sample very little. That being said, only 8% of subjects never sample at all.

Samples also change significantly over time, starting at more than 4 on average in the first

round, and then declining to about 2 by round 5, to settle on an average of 1.4 thereafter.

The fact that DMs do sample fully redundant information seems remarkable in our context,
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given the high opportunity costs of subjects on Prolific.

We next examine what happens to choice behavior once free sampling is introduced. Our

updating equations raise an intriguing question: may free sampling in DfD introduce (lim-

ited) sampling bias into DfD? The question arises simply because, although subjects are

given an objective description of the odds, our updating equation (7) suggests that actual

samples drawn are simply added to the neural samples representing the evidence in favour

and against the lottery. Small samples, however, will suffer from the same issues we have

seen in DfE: they will tend to be biased against observing the rare event, so that our model

predicts that they will yield biased updates of the true log-odds.
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Figure 15: Meta-analysis of the GAP after free sampling from description
Panel A shows a forest plot of the gap between DfD+free versus DfE+forced. Panel B shows a forest plot of the
GAP between DfD+free and DfE. The light blue circles, labeled ‘calc.’, indicate the raw differences in choice
proportions in the data, g. The dark blue triangles, labeled ‘post.’, indicate the inferred posterior parameters, ĝ.
The thick, dashed vertical line indicates the meta-analytic posterior mean, µ, and the shaded rectangle indicates
the 95% credible interval around that estimate.

Figure 15 shows behavior resulting from free sampling from fully described options, and

compares it to various benchmarks using our meta-analytic technique. The difference in
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choice proportions are coded in the usual way, consistent with the standard description-

experience gap. Panel A examines the GAP between DfD+free and DfE+forced. While

only 2 of the raw differences in choice proportions are significant at conventional levels (and

none of the posterior differences), the meta-analytic mean indicates a small negative GAP

of 3pp, with its 95% credible interval of [−0.059 , −0.002] pp. indicating a statistically

significant effect.41 Panel B examines the GAP between DfD+free and DfE (also with free

sampling). At 3.5 pp., the point estimate of the GAP is now again positive, consistent with

the direction of the standard gap. However, it is (just) not significantly different from 0

at conventional levels, with a 95% credible interval of [−0.001 , 0.072]. In other words, free

sampling from described options closes the GAP with DfE. By levelling the playing field

and allowing for free sampling in both cases, we thus again close the GAP, but now by

making DfD more similar to DfE.
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Figure 16: Structural estimates, DfD versus DfE
The figure shows structural estimates of the model parameters. Panel A compares likelihood-discriminability γ
in DfE and DfE+forced. Panel B compares likelihood-discriminability, γ,in DfD and DfD+forced.

41The significant result notwithstanding the relatively small effect seems in particular due to the fact that
almost all differences in choice proportions go in the same direction. Even though few of them are significant
individually, this produces a highly coherent effect at the aggregate level, reducing the variance and hence
the confidence bounds.
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Figure 16 shows the raw choice proportions in DfD+free, and directly juxtaposes them

with the choice proportions in DfD and in DfE. The difference from DfD is very large,

with somewhat less risk taking for small probabilities, and much more risk taking for large

probabilities. This results in a positive dependence of choice proportions on the probabil-

ity of winning. Indeed, a meta-regression of the choice proportions on the probability of

winning indicates a significantly positive slope, with λ = 0.174, and a 95% credible inter-

val of [0.141 , 0.241]. This further suggests that sampling bias now affects DfD, just like

predicted by our model. Nonetheless, the influence of the description is strong enough to

keep the likelihood-dependence significantly smaller than observed under DfE (where we

have observed a λ = 0.284, with a credible interval of [0.226 , 0.347]). This shows that sam-

ples from description—while affecting probabilities in the way predicted by our model—are

still balanced against the description provided on the screen, with choices indicating an

aggregation of the two types of information.

The feat of closing the GAP with DfE by acting on DfD is remarkable inasmuch it achieves

something that acting on DfE alone has never achieved—it closes the GAP by manipulating

one of the two sides only. This further speaks to the mechanism predicted by our model:

studies intervening on DfE have generally removed sampling bias by increasing the number

of samples taken.42 This, in turn, has decreased sampling bias while at the same time

strongly reducing inference bias, with the upshot that the GAP was not eliminated. In the

DfD+free treatment, we achieve the opposite: guided by our model, we introduced a limited

degree of sampling bias into DfD, all the while keeping inference bias relatively large due

to the few samples added. This closes the GAP when people can sample freely.

D Meta-analytic estimation

Our meta-analysis follows the “standard” equations presented in the main text. We estimate

the model in Stan (see Vieider 2024a for a tutorial on the use of Stan for decision models;

chapter 4 contains a part specifically dedicated to meta-analysis). Here is the Stan code

used to estimate the model:

42While some studies have tried to use the sampled probabilities in such a way as to create matched
probabilities from description, thus potentially circumventing this issue, such approaches have run into the
limitation of producing many degenerate choices between different sure amounts of money. This is due to
the fact that many subjects make a choice without ever having observed on of the outcomes—something
that is indeed consistent with our model, and which further showcases the effects of inference bias. See Wulff
et al. (2018), p151 and onwards, for a discussion of these issues and an overview of attempts to close the
GAP in the literature.
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//footnotesize

data{
int<lower=1> N; \\number o f obse rvat i on

vec to r [N] gap ; \\ d i f f e r e n c e in cho i c e propor t i on s

vector<lower=0>[N] se ; \\ standard e r r o r o f the d i f f e r e n c e

}
parameters {

vec to r [N] gamma; // true , est imated gap ( c a l l e d g hat in paper )

r e a l mu; //meta−ana l y t i c mean (omega in paper )

r ea l<lower=0> sigma ; // var iance

}
model{
// r e g u l a r i z i n g p r i o r s

sigma ˜ normal ( 0 , 1 ) ;

mu ˜ normal ( 0 , 1 ) ;

// measurement e r r o r model :

gap ˜ normal ( gamma , se ) ;

// l i k e l i h o o d :

gamma ˜ normal ( mu , sigma ) ;

}

The meta-regression is introduced into the same code simply by modifying the mean mu,

making it dependent on the probability of winning:

//footnotesize

data{
int<lower=1> N;

int<lower=1> K; // dimension o f des ign matrix

vec to r [N] gap ;

vector<lower=0>[N] se ;

matrix [N,K] X; // des ign matrix o f exp lanatory v a r i a b l e s

}
parameters {
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vec to r [N] gamma;

r e a l mu;

r ea l<lower=0> sigma ;

vec to r [K] beta ;

}
model{

sigma ˜ normal ( 0 , 1 ) ;

mu ˜ normal ( 0 , 1 ) ;

// measurement e r r o r model :

gap ˜ normal ( gamma , se ) ;

// l i k e l i h o o d :

gamma ˜ normal ( mu + X ∗ beta , sigma ) ;

}

}

E Structural estimation

We implement our structural equations based on the discriminability equation in the main

text, using the objective probability of winning, p, in DfD, DfD+forced, and DfE+forced.

We use the sampled probability p̂ in DfE, and complement this with an assumption about

the log-cost benefits in the case that one of the outcomes has not yet been observed when

the decision is taken, as described above.

We keep the model as simple as possible in order to maximize our comparative power and

to keep the model parsimonious. This means, first of all, that we normalize the coding noise

variance by division with the variance of the prior, so that γ = 1

1+ ν2

σ2

. This helps both iden-

tifiability and comparability across treatments but happens without loss of generality, since

it is the ratio between coding noise variance and prior variance that determines behavior

(see also Natenzon 2019). Another assumption that we maintain throughout the paper is

that the mean of the prior, µ, remains unaffected over the course of the experiment. We

exploit this in the estimation by letting µ be the same across the 2 parts of the experiment,

whereas ν and as a consequence γ and θ are all allowed to vary freely.
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We estimate the model using a Bayesian hierarchical setting in Stan (Carpenter et al. 2017).

The hierarchical setting allows us to pool information from the aggregate estimation, which

provides the priors, and from individual-level parameter estimates, which contribute to

the aggregate in proportion to their precision. The aggregation equation follows exactly

the equation we describe for our Bayesian inference process. Vieider (2024a) provides a

step-by-step tutorial on the estimation fo decision models in Stan.

Below, we include an commented version of the code we use in DfD, DfD+forced, and

DfE+forced (the code used in DfE is very similar, and only has an additional parameter

ρ, as well as including the truely observed log-odds as data; it is available upon request).

We define the varianbles at the level of the individual choices. This allows us to implement

a literal specification of our model, where task-specific quantities are encoded by param-

eters α and β. These parameters are nested in individual-level parameters, which we use

to fit the choice data, and which ensures that the choice-level parameters are identified

and well-behaved (since the individual-level parameters act as informative priors). Finally,

individual-level parameters are nested within an overall distribution.

We check convergence by making sure that all R-hats are below 1.05. We also carefully

check that any divergent iterations do not indicate problems with the posterior (and discard

all estimates with more than 1% divergent iterations). The hyperpriors on the aggregate

parameter means are given very wide priors, which makes them mildly regularizing—they

help the convergence of the simulation algorithm by being centered around the region where

we expect the parameter values to fall, but they attribute significant probabilitry mass to

1 order of magnitude above the region into which we would expect the parameters to

reasonably fall. Our estimates are indeed not sensitive to the choice of the exact parameter

values. This follows best practices in Bayesian estimation.

data{ \\ de c l a r e data

int<lower=1> N; \\number o f ob s e rva t i on s

int<lower=1> N id ; \\number o f s ub j e c t s

array [N] i n t id ; \\unique i d e n t i f i e r

array [N] r e a l high ; \\outcome x

array [N] r e a l low ; \\outcome y

array [N] r e a l sure ; \\outcome c

array [N] r e a l p ; \\ p r obab i l i t y
array [N] i n t c h o i c e r i s k y ;\\ cho i c e : 1 i f r i s k y

array [N] i n t part2 ; \\dummy to i nd i c a t e part 2

}
transformed data{
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array [N] r e a l l cb ; \\ l og co s t b e n e f i t r a t i o

array [N] r e a l l l r ; \\ log−odds

f o r ( i in 1 :N){
l cb [ i ] = log ( ( sure [ i ] − low [ i ] ) / ( high [ i ] − sure [ i ] ) ) ;

l l r [ i ] = log ( p [ i ] / ( 1 − p [ i ] ) ) ;

}
}
parameters {

vec to r [ 3 ] means ; \\ aggregate mean parameters on log s c a l e

vector<lower=0>[3] t au id ; \\ aggregate parameter va r i ance s

c h o l e s k y f a c t o r c o r r [ 3 ] L omega id ; \\decomposed covar matrix

array [ N id ] vec to r [ 3 ] Zid ; \\ stan dard ized ind iv idua l−l e v e l parameters

}
transformed parameters {
// covar and temp parameters

matrix [ 3 , 3 ] Rho id = L omega id ∗ L omega id ’ ; \\ obta in covar iance matrix

array [N] vec to r [ 3 ] pars ; \\parameter matrix on log s c a l e

// gene ra t i v e parameters :

vec to r [N] mu; \\ p r i o r mean

vector<lower=0>[N] kappa ; \\ concent ra t i on part1

vector<lower=0>[N] kappaf ; \\ concent ra t i on part2

// der ived parameters from here

vec to r [N] alpha ; \\ der ived parameters−−s ee d e f i n i t i o n s in text , and below

vec to r [N] beta ;

vec to r [N] nu ;

vec to r [N] gamma;

vec to r [N] theta ;

vec to r [N] omega ;

vec to r [N] a lpha f ;

vec to r [N] be ta f ;

vec to r [N] nuf ;

vec to r [N] gammaf ;

vec to r [N] t h e t a f ;

vec to r [N] omegaf ;

f o r ( i in 1 :N){
pars [ i ] = means + d i ag p r e mu l t i p l y ( tau id , L omega id ) ∗ Zid [ id [ i ] ] ;

mu[ i ] = pars [ i , 1 ] ;

kappa [ i ] = exp ( pars [ i , 2 ] ) ;

kappaf [ i ] = exp ( pars [ i , 3 ] ) ;

// d e f i n e der ived parameters

alpha [ i ] = kappa [ i ] ∗ p [ i ] ;

beta [ i ] = kappa [ i ] ∗ (1 − p [ i ] ) ;

nu [ i ] = sq r t ( trigamma ( alpha [ i ] ) + trigamma ( beta [ i ] ) ) ;
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gamma[ i ] = 1/( 1 + nu [ i ] ˆ2 ) ;

theta [ i ] = exp ( ( gamma[ i ] − 1) ∗ mu[ i ] ) ;

omega [ i ] = nu [ i ] ∗ gamma[ i ] ;

a lpha f [ i ] = kappaf [ i ] ∗ p [ i ] ;

b e ta f [ i ] = kappaf [ i ] ∗ (1 − p [ i ] ) ;

nuf [ i ] = sq r t ( trigamma ( a lpha f [ i ] ) + trigamma ( be ta f [ i ] ) ) ;

gammaf [ i ] = 1/( 1 + nuf [ i ] ˆ2 ) ;

t h e t a f [ i ] = exp ( ( gammaf [ i ] − 1) ∗ mu[ i ] ) ;

omegaf [ i ] = nuf [ i ] ∗ gammaf [ i ] ;

}
}
model{

vec to r [N] u d i f f ; \\ l o c a l vec to r

\\ p r i o r s f o r aggregate ( h i e r a r c h i c a l ) parameters

t au id ˜ exponent i a l ( 5 ) ;

L omega id ˜ l k j c o r r c h o l e s k y ( 4 ) ;

means [ 1 ] ˜ normal (0 , 5 ) ;

means [ 2 ] ˜ normal (0 , 5 ) ;

means [ 3 ] ˜ normal (0 , 5 ) ;

\\ p r i o r s f o r i nd i v i dua l l e v e l parameters , s tandard i zed :

f o r (n in 1 : N id )

Zid [ n ] ˜ std normal ( ) ;

\\ the mode :

f o r ( i in 1 :N ) {
ud i f f [ i ] = ( ( gamma[ i ] ∗ l l r [ i ] − l cb [ i ] − l og ( theta [ i ] ) )/ omega [ i ] ) ∗ (1 − part2 [ i ] ) +

( ( gammaf [ i ] ∗ l l r [ i ] − l cb [ i ] − l og ( t h e t a f [ i ] ) )/ omegaf [ i ] ) ∗ part2 [ i ] ;

c h o i c e r i s k y [ i ] ˜ b e r n ou l l i ( Phi ( u d i f f [ i ] ) ) ;

}
}
\\ code below r e cove r s i nd iv idua l−l e v e l parameters

generated quan t i t i e s {
vec to r [N] l o g l i k ;

vec to r [N] u d i f f ;

v ec to r [ N id ] mun;

vec to r [ N id ] kappan ;

vec to r [ N id ] alphan ;

vec to r [ N id ] betan ;

vec to r [ N id ] nun ;

vec to r [ N id ] gamman ;

vec to r [ N id ] thetan ;
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vec to r [ N id ] kappafn ;

vec to r [ N id ] a lphafn ;

vec to r [ N id ] beta fn ;

vec to r [ N id ] nufn ;

vec to r [ N id ] gammafn ;

vec to r [ N id ] the ta fn ;

vec to r [ 3 ] temp ;

f o r (n in 1 : N id ){
temp = means + d i ag p r e mu l t i p l y ( tau id , L omega id ) ∗ Zid [ n ] ;

mun[ n ] = temp [ 1 ] ;

kappan [ n ] = exp ( temp [ 2 ] ) ;

kappafn [ n ] = exp ( temp [ 3 ] ) ;

alphan [ n ] = kappan [ n ] / 2 ;

betan [ n ] = kappan [ n ] / 2 ;

nun [ n ] = sq r t ( trigamma ( alphan [ n ] ) + trigamma ( betan [ n ] ) ) ;

gamman [ n ] = 1/(1 + nun [ n ]ˆ2 ) ;

thetan [ n ] = exp ( ( gamman [ n ] − 1 ) ∗ mun[ n ] ) ;

a lphafn [ n ] = kappafn [ n ] / 2 ;

beta fn [ n ] = kappafn [ n ] / 2 ;

nufn [ n ] = sq r t ( trigamma ( a lphafn [ n ] ) + trigamma ( beta fn [ n ] ) ) ;

gammafn [ n ] = 1/(1 + nufn [ n ]ˆ2 ) ;

the ta fn [ n ] = exp ( ( gammafn [ n ] − 1 ) ∗ mun[ n ] ) ;

}

f o r ( i in 1 :N ) {
ud i f f [ i ] = ( ( gamma[ i ] ∗ l l r [ i ] − l cb [ i ] − l og ( theta [ i ] ) )/ omega [ i ] ) ∗ (1 − comp [ i ] ) +

( ( gammaf [ i ] ∗ l l r [ i ] − l cb [ i ] − l og ( t h e t a f [ i ] ) )/ omegaf [ i ] ) ∗ comp [ i ] ;

l o g l i k [ i ] = b e rnou l l i l pm f ( c h o i c e r i s k y [ i ] | Phi approx ( u d i f f [ i ] ) ) ;

}
}

F Prospect Theory Identification and Estimation

Let vo be the utile of an outcome o, and let πp be the decision weight a probability p. The

condition under which the gain lottery (x, p; y) will be chosen over the intermediate sure

outcome c can then be represented under prospect theory as πpvx + (1 − πp)vy ≥ vc. To

be fit to data, this equation will need to be augmented by a stochastic choice model. The

most popular choice is the random utility model, which adds an error εℓ to the lottery, and
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an error εc to the sure amount. Assuming that both errors are normally distributed mean

0 (“white noise” errors), and letting ε = εℓ − εc ∼ N (0, τ2), the choice probability can be

expressed as follows:

Pr[(x, p; y) ≻ c] = Φ

[
πpvx + (1− πp)vy − vc

τ(x− y)

]
,

where Φ is the standard normal cumulative distribution function, and where we have made

the error variance heteroscedastic across the range of the outcomes in the lottery (see e.g.

Bruhin et al. 2010 and L’Haridon & Vieider 2019).

For y = 0, the PT model described above is only unique up to a power (Gonzalez & Wu

1999). This issue, however, can be overcome by assuming specific functional forms for the

utility and probability weighting functions, which map outcomes and probabilities into utils

and decision weights, and by identifying the parameters of such functions jointly with the

error term. Identification jointly with the error is thereby crucial, since taking the whole

stochastic equation to a power would reduce the fit to the data, given that rescaling the

(deterministic) PT choice equation would inevitably come at the expense of increasing the

error and hence decreasing the fit in our setting. Extensive simulations indeed show that

– based on such additional assumptions—we can recover simulated PT parameters from

binary choices between lotteries (x, p; 0) and sure amounts c with high degrees of accuracy,

as long as there is some orthogonality in the variation of p and x (and consequently, c).

In our estimations, we use power utility throughout, so that:

u(x) = xη.

This is the most commonly used utility specification by far in the literature. The specifica-

tion of utility is furthermore relatively unimportant when it comes to describing the shape

of the probability weighting function, which is our main quantity of interest. For the latter,

we assume the popular linear in log-odds function (Gonzalez & Wu 1999), which creates a

direct bridge to our noisy coding model:

w(p) =
δpγ

δpγ + (1− p)γ
,

where δ captures optimism, and γ likelihood-sensitivity, with γ < 1 describing likelihood-

insensitivity as usually observed in DfD, and γ > 1 likelihood-oversensitivity as usually

observed in DfE when estimating the functions o the true underlying probabilities.
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We again estimate the model in a Bayesian hierarchical setup in Stan. All the procedures

are the same as described in the previous section for the structural estimations of our model.

The Stan code takes the following form (see Vieider 2024a, for a tutorial and step-by-step

explanation of this code):

data{
int<lower=1> N;

int<lower=1> N id ;

array [N] i n t id ;

array [N] r e a l high ;

array [N] r e a l low ;

array [N] r e a l sure ;

array [N] r e a l p ;

array [N] i n t c h o i c e r i s k y ;

}
parameters {

vec to r [ 4 ] mus ;

vector<lower=0>[4] tau ;

c h o l e s k y f a c t o r c o r r [ 4 ] L omega ;

array [ N id ] vec to r [ 4 ] Z ;

}
transformed parameters {

matrix [ 4 , 4 ] Rho = L omega∗L omega ’ ;

array [ N id ] vec to r [ 4 ] theta ;

vector<lower=0>[N id ] rho ;

vector<lower=0>[N id ] gamma;

vector<lower=0>[N id ] d e l t a ;

vector<lower=0>[N id ] sigma ;

f o r ( n id in 1 : N id ){
theta [ n id ] = mus + d i ag p r e mu l t i p l y ( tau , L omega ) ∗ Z [ n id ] ;

rho [ n id ] = exp ( theta [ n id , 1 ] ) ;

gamma[ n id ] = exp ( theta [ n id , 2 ] ) ;

d e l t a [ n id ] = exp ( theta [ n id , 3 ] ) ;

sigma [ n id ] = exp ( theta [ n id , 4 ] ) ;

}
}
model{

vec to r [N] wp ;

vec to r [N] pv ;

vec to r [N] u d i f f ;

v ec to r [N] pu ;

tau ˜ exponent i a l ( 5 ) ;

L omega ˜ l k j c o r r c h o l e s k y ( 4 ) ;
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mus [ 1 ] ˜ normal (−0.5 , 0 . 2 5 ) ;

mus [ 2 ] ˜ normal (0 , 2 ) ;

mus [ 3 ] ˜ normal (0 , 2 ) ;

mus [ 4 ] ˜ normal (0 , 2 ) ;

f o r ( n id in 1 : N id )

Z [ n id ] ˜ std normal ( ) ;

f o r ( i in 1 :N ) {
wp[ i ] = ( de l t a [ id [ i ] ] ∗ p [ i ] ˆgamma[ id [ i ] ] ) / ( d e l t a [ id [ i ] ] ∗ p [ i ] ˆgamma[ id [ i ] ] + (1 − p [ i ] ) ˆgamma[ id [ i ] ] ) ;

pu [ i ] = ( wp [ i ] ∗ high [ i ] ˆ rho [ id [ i ] ] + (1 − wp[ i ] ) ∗ low [ i ] ˆ rho [ id [ i ] ] ) ;

u d i f f [ i ] = (pu [ i ] − sure [ i ] ˆ rho [ id [ i ] ] ) / ( sigma [ id [ i ] ] ∗ ( high [ i ] − low [ i ] ) ) ;

c h o i c e r i s k y [ i ] ˜ b e r n o u l l i l o g i t ( u d i f f [ i ] ) ;

}
}

G Additional results

Additional results on free sampling in DfE

Subjects take relatively few samples in our experiment, something that may be explained

by the high opportunity costs faced by subjects on Prolific, who—contrary to students in

lab or classroom settings—can leave as soon as they are done with the experiment and move

on to other earning opportunities. The average number of samples taken is 8, which puts

our study at roughly the first tercile of the distribution summarized in the meta-analysis of

Wulff et al. (2018). Samples taken, however, generally tend to be lower in tasks comparing

lotteries with sure outcomes, as we use here. The average subject on the average task takes

3.3 samples from the safe option, but 4.3 samples from the risky option. However, samples

vary greatly between individuals, ranging from 2 on average (1 per option) to about 40.

Panel A in Figure 4 examines the average samples by probability from the risky option at the

task resolution. The samples are presented following a median split on risk aversion in the

first, description-based, part of the treatment, implemented as the proportion of choices of

the sure amount. This aims to test our model prediction according to which samples should

vary with the underlying probability depending on the initial risk aversion of the DM. These

predictions are strongly supported by the evidence presented in the figure. Risk averse DMs

take few samples from small-probability lotteries, but sample significantly more from large-

probability lotteries. For the least risk averse half of the sample, we observe a (somewhat

weaker) trend in the opposite direction. This aligns with our prediction, according to which
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Figure 17: Samples by probability and risk aversion
The figure shows the number of samples taken from the risky option by probability and risk aversion at the task
level resolution in Panel A. Risk aversion is assessed as the proportion of safe choice in the first, DfD part of
the experiment, after removing repeated tasks. The categorization is obtained using a median split. Error bars
show ±1 standard error. Panels B through D show the distribution of sampled probabilities by different actual
probabilities.

risk averse DMs should have less of a conflict between noise and sampling bias in small

probability lotteries, thus reaching a decision more quickly.

Table 2 shows a more nuanced analysis using regressions on continuous risk aversion mea-

sures. Regression I shows that samples taken increase in the probability of winning across

the whole sample. Regression II qualifies this effect, showing that the larger overall sam-

ples are mainly driven by risk aversion, and that probability-dependence of samples taken

interacts strongly with risk aversion. The results thus support the tension between risk

aversion and sampling bias for large probabilities predicted by our model. Regression III

further shows that the prize x and the absolute deviation from the EV do not matter, but

that samples decline slightly over the rounds of the experiment.

The small number of samples taken is reflected in the probabilities people experience. This

is illustrated figure 17, panels B through D, which plot distributions of probabilities inferred

from the actual samples a DM observed. For small probability lotteries, subjects experience

a smaller probability than the true one in 66% of cases overall, while getting a correct

picture in some 3.4% of cases. For large probability lotteries this picture is reversed, with

55% of samples over-estimating the true probability, and only 2.2% resulting in a correct

estimate. The asymmetry we see between small and large probabilities suggests that the
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dep. var: number of samples sampling bias
reg. I reg. II reg. III reg. IV reg. V reg. VI

probability 0.288 0.331 0.299 -0.029 -0.027 -0.066
(0.082) (0.085) (0.120) (0.009) (0.008) (0.011)

risk aversion 0.569 0.615 -0.016 -0.008
(0.291) (0.282) (0.012) (0.017)

prob × risk av. 0.618 0.638 -0.025 -0.023
(0.087) (0.085) (0.009) (0.008)

prize -0.004 -0.002
(0.005) (0.001)

abs. EV dev. -0.180 -0.012
(0.230) (0.020)

round -0.031 0.001
(0.005) (0.001)

constant 3.635 3.705 4.739 0.036 0.046 0.006
(0.283) (0.289) (0.329) (0.010) (0.011) (0.023)

observations 2178 2178 2178 2178 2178 2178
subjects (clusters) 99 99 99 99 99 99

Table 2: Regression analysis of samples
Regressions in the table are based on a Bayesian outlier-robust regression model. Robust regression is imple-
mented by means of a student-t distribution with 2 degrees of freedom, and regressions are programmed with
random intercepts to cluster errors at the subject level. Regressions I, II, and III use the total number of samples
from the risky option as dependent variable. Regressions IV, V, and VI use the sampling bias, defined as the
true probability minus the inferred probability for small probability lotteries, and as the inferred probability
minus the true probability for large probability lotteries, as dependent variable. Numbers in parentheses indicate
standard errors. Probability and risk aversion are normalized by taking z-scores.
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larger samples taken for large probabilities result in a more balanced picture.

This is further tested in regressions IV to VI in table 2. Regression I shows that sampling

bias declines in the probability of winning for the whole sample. Regression II refines this

picture by controlling for risk aversion and its interaction with the probability of winning,

and shows sampling bias is reduced most strongly for risk averse DMs in large-probability

lotteries. This is indeed what we would expect, given the sampling behavior discussed

above. Interestingly, the only effect not paralleling those for the number of samples is the

effect of decision round. In particular, we do not find an increase in bias over the rounds.

This suggests that the effect in regression III whereby samples decline over the rounds may

be due to learning, in the sense that subjects become more focused in their samples, rather

than to fatigue.

Nonparametric within-subject results

Here, we replicate the nonparametric between-subject analysis in the paper by presenting

within-subject comparisons wherever this is possible. The descriptions of the figures are

self-contained.
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Figure 18: The GAP: within-subject

Choice proportions by probability for the decision-experience gap: DfD versus DfE. Error bars indicate 1

standard error.
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Figure 19: DfD+forced vs DfD within subject

Choice proportions by probability, within-subject comparison between DfD+forced and DfD. Error bars indicate

1 standard error.

Figures at task level

Here, we show all figures for which we averaged across c at the probability level at a task-

level resolution. The figure descriptioins are self-contained.
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Figure 20: The GAP at the task level (between-subjects)

Choice proportions by task for the decision-experience gap: DfD versus DfE. Error bars indicate 1 standard

error.
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Figure 21: DfE+forced versus DfE at the task level (between-subjects)

Choice proportions by task for DfE+forced compared to DfE. This comparison is only possible between-subjects.

Error bars indicate 1 standard error.
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Figure 22: DfD+forced versus DfD at the task level (between-subjects)

Choice proportions by task for DfD+forced compared to DfD. Error bars indicate 1 standard error.
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Figure 23: DfD+forced versus DfD at the task level (between-subjects)

Choice proportions by task for DfD+forced compared to DfD. Error bars indicate 1 standard error.

Within-subject structural results

This section contains within-subject structural comparisons for those cases where we used

between-subject comparisons in the main text, but within-subject comparisons are possible.

The descriptions of the graphs are self-contained.
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Figure 24: Likelihood-discriminability in DfD vs DfD+forced, within subject

Likelihood-discriminability, γ, empirical cumulative distribution function of individual-level posterior means.

Within-subject comparison between DfD and DfD+forced.

H Instructions to Subjects

H.1 Stage 1 Instructions

Subjects in all treatments, were given the following instructions prior to Stage 1.
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H.2 Stage 2 Instructions

In Stage 2, subjects assigned to the DfD treatment were given the following instructions:

Subjects assigned to DfE or DfE+forced were initially given the following instructions:

Subjects assigned to DfD+forced or DfD+forced were initially given the following instruc-

tions:

After this, subjects in DfE or DfD+free were given the following instructions:
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while subjects in DfE+forced or DfD+forced were instead given the following instructions:

Finally, all subjects were given these instructions prior to the beginning of Stage 2:
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