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Abstract

Probabilistic beliefs are key drivers of economic behaviour, yet incentive-compatible and
easy-to-understand measures of beliefs have proved elusive. We develop a novel method
that allows us to econometrically recover probabilistic beliefs from simple binary choices
between bets on different events. The method is incentive-compatible under all major models
of decision-making, and easy to understand for subjects. We test the method by eliciting
beliefs about the reciprocation of trust. The mean belief we elicit predicts trust, and performs
slightly better than commonly used qualitative and quantitative survey questions. Further
adding confidence in beliefs describing the belief distribution improves the performance of
our measure dramatically. This shows the promise of the method for applied work.

1 Introduction

Probabilistic beliefs about outcome-generating events play a key role for most any economic

decision, from investment choices to strategic interactions. Such beliefs have, however, proved

challenging to quantify by means of simple, incentive-compatible tasks. While a variety of belief

measures have been used especially in the literature on interactive games, such measures are

often introspective (Manski, 2004; Bellemare, Kröger and Van Soest, 2008). Revealed-preference

measures of beliefs such as scoring rules have been shown to suffer from failures of incentive-

compatibility when subjects have preferences deviating from expected value maximization. Gen-

eralizations of these measures devised to make them incentive-compatible, such as the one pro-

posed by Hossain and Okui (2013), are difficult to understand for experimental subjects, thus

casting doubt on the behavioural reactions they may trigger (Danz, Vesterlund and Wilson,
∗The present work has received IRB approval from the ethics committee at the Faculty of Business and Eco-

nomics at Ghent University under number FEB2020G, as well as from University Mohammed VI Polytechnic.
Ferdinand Vieider and Levent Gumus gratefully acknowledge financial support by the Research Foundation Flan-
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1 INTRODUCTION

2022; see also Schotter and Trevino, 2014, for a detailed discussion of the issues). Heinemann,

Nagel and Ockenfels (2009) and Offerman, Sonnemans, van de Kuilen and Wakker (2009) have

proposed methods to correct scoring rules ex post with additional preference measurements, but

such approaches may be sensitive to measurement noise. Other revealed-preference methods

eliciting matching probabilities or cash equivalents need strong assumptions about preferences

(Baillon, Bleichrodt, Keskin, L’Haridon and Li, 2018a), and may be subject to possible error

propagation (Abdellaoui, Bleichrodt and Gutierrez, 2024).

Here we develop and test an incentive-compatible method to measure subjective belief dis-

tributions. Probabilistic beliefs are inferred from a series of binary choices between exogenously

determined events to win a fixed prize. Specifically, we use these binary choices to economet-

rically estimate parametric subjective probability distributions. The method is robust to both

probability distortions, one of the main sources of descriptive discrepancies from the standard

model of rational choice under uncertainty, and utility curvature. The method is much simpler to

administer and understand than methods based on choice lists systematically changing cutoffs

between events (Abdellaoui, Bleichrodt, Kemel and L’Haridon, 2021), and is likely to reduce

noise relative to the latter (see Bouchouicha, Wu and Vieider, 2023, for evidence of noise arising

from choice list designs under risk). The main cost of these advantages is that the recovery of

beliefs requires the use of a parametric belief distribution. The latter can however easily be found

for most applications, so that we see this as a relatively minor limitation.

We test our method by measuring beliefs about the probability of reciprocation in a trust

game. Beliefs about trustworthiness play a central role in trusting decisions (Fehr, 2009). We

thus let subjects play a variation on the trust game before measuring their probabilistic beliefs

about the likelihood of reciprocity.1 The latter are elicited by letting subjects bet on the pro-

portion of reciprocating individuals in a large group of experimental subjects. This setting has

several advantages. Having individual measures of trust allows us to assess the predictive power

of our belief measures for trusting behaviour, which constitutes a test for our belief-measurement

method. The explicitly frequentist framing makes it easy for subjects to understand how uncer-

tainty will be resolved. A Beta distribution seems a natural choice for the bets on the proportion

of reciprocators in a population we consider, and it is advantageous because of its great flexibility.
1We developed the variation of the trust game specifically to avoid conditionality of reciprocating decisions on

initial offers. This allows us to obtain a continuous measure of trust, which gives us sufficient power in regression
analysis, while keeping the offer to the second-mover constant. The reciprocating decision is thus decoupled from
the level of trust displayed by the first mover, which in turn allows for a straightforward measurement of beliefs
about reciprocation. See the description of the experiment for details.
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The mean of the Beta reflects a subject’s expectation about the percentage of reciprocators. The

concentration of the Beta reveals the amount of uncertainty the subject perceives as surrounding

the expected percentage of reciprocators. It consequently measures the confidence the subject

has in its assessment. The use of the Beta concentration echoes the idea of a second-order prob-

ability distribution over the set of possible percentages of reciprocators, i.e., the set of priors

(Klibanoff, Marinacci and Mukerji, 2005).

We use a fairly minimal set of binary choices to obtain our belief measurements, consisting

of 39 choices plus 5 repetitions. Belief measurements take some 6-10 minutes including instruc-

tions, showing the viability of the method in cases where beliefs are to be used as an explanatory

variable. The flip side is that identification of individual-level parameters relies on relatively few

data points. We take the uncertainty arising from this seriously by using a Bayesian hierarchical

approach to analyze the data. This approach yields an optimal compromise between aggregate

and individual-level data, weighing individual-level estimates by their relative reliability. Esti-

mated belief parameters furthermore have a probabilistic interpretation, given that parameters

are uncertain quantities in Bayesian statistics, while the data are considered given (in the true

sense of the Latin data, for given). We regress our measure of trust on the parameters capturing

the mean belief and confidence in the mean belief in the same model in which we estimate these

parameters, thus taking the full posterior uncertainty about these parameters into account. We

describe the method in some detail and make the code publicly available, to provide a toolbox

for applied researchers interested in belief measurement.

We find considerable heterogeneity in mean beliefs, as well as in confidence about beliefs as

measured by the concentration parameter of the Beta distribution.2 Our measures of beliefs about

reciprocity have significant explanatory power for trusting behaviour. The mean belief explains

about 7% of variation in trust. We compare this to several commonly used survey measures.

At between 4% and 5% of variance explained, a more fine-grained variation of the World Value

Survey measure and an introspective quantitative measure simply asking for the proportion of

reciprocators perform best, although they still fall short of our incentivized measure. We next

examine whether our measure of confidence in beliefs has any explanatory power above the mean

belief. We find that confidence in beliefs has a strongly positive effect on trust. Conditional on

the inclusion of mean beliefs, confidence in beliefs is indeed the single most important explanatory

variable, bringing the explained variance to over 20%. Further adding a survey question on the
2We mainly use the concentration because of its intuitive interpretation and because it is orthogonal to our

measure of the average belief, but all the results are stable to using alternative measures of dispersion such as the
variance instead.
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‘general willingness to take risk’ and controls for age and gender brings this figure to 24%—a

remarkable figure compared to typical figures in the decision-making literature (von Gaudecker,

van Soest and Wengström, 2011; L’Haridon and Vieider, 2019; Di Falco and Vieider, 2022).3

Our findings also add to an extensive literature discussing the importance of beliefs about

reciprocity on trust, as well as adding to the literature on the validity of survey measures of

beliefs. Such survey measures have been used extensively in applied work (Knack and Keefer,

1997; Tabellini, 2010; Rohner, Thoenig and Zilibotti, 2013), but their validity has at times been

disputed (Glaeser, Laibson, Scheinkman and Soutter, 2000). While we also find a correlation of

trust with measures of risk taking—which is clearly relevant theoretically (Karlan, 2005; Fehr,

2009), though empirically its influence is disputed (Bohnet and Zeckhauser, 2004; Houser, Schunk

and Winter, 2010; Li, Turmunkh and Wakker, 2020)—our measures of preferences are rather

limited. Li et al. (2019) explore the impact of ambiguity attitudes on trusting behaviour, using a

nonparameteric measurement method proposed by Baillon, Huang, Selim and Wakker (2018b) to

obtain attitudes towards natural sources of uncertainty without the need to first measure beliefs.

While their preference measures are thus much richer than ours, they only show the effect of the

difference in point beliefs about the best and worst of three events. Engelmann, Friedrichsen,

van Veldhuizen, Vorjohann and Winter (2023) propose a decomposition of the trust game, and

measure beliefs by an introspective question incentivized with a linear scoring rule. They also

use a matching probability jointly capturing beliefs and attitudes towards trust. Both measures

only provide point estimates. Our approach is thus highly complementary to these approaches

by specifically focusing on the impact of more sophisticated measures of probabilistic beliefs.

2 Study Design

2.1 General setup and implementation

We ran the experiment at the laboratory of University Mohammed VI Polytechnic in Rabat,

Morocco. 127 subjects (75% female) took part in the experiment between October and December

2022. All the participants were students at the Faculty of Governance, Economics and Social

Sciences. They were recruited through posters and an email sent to all students. The computer-
3A comparison to the explanatory power of other measures of beliefs is difficult, given that the power of a belief

measure in explaining behaviour will depend crucially on the type of task used. In particular, the trust game we
study here could potentially be affected by risk attitudes (Karlan, 2005; Schechter, 2007), ambiguity attitudes
(Li, Turmunkh and Wakker, 2019), or betrayal aversion (Bohnet and Zeckhauser, 2004), amongst others. We thus
mostly benchmark the performance internally against commonly used qualitative and quantitative introspective
measures, which have been used widely in the literature.
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based experiment was conducted through individual interviews of three subjects at a time, using

software specifically developed for the experiment. Each participant was seated in front of a

screen in the presence of the experimenter. We used small sessions to improve the quality of

the data. No communication between participants was allowed during the experiment. At their

arrival, subjects were presented with video instructions, after which they were asked to sign the

consent form.4 This was followed by a series of comprehension questions and a set of practice

questions so that the participants could get familiar with the software. No subject refused to

participate or was excluded. The experiment took about 30 minutes in total.

The experiment was run using the strategy method, i.e. each subject played the role of

first mover or trustor, and of second mover, or trustee. The payoff-relevant role was randomly

determined at the end. A pilot experiment showed that it made no difference whether the role

of trustor and trustee were assigned between subjects or within subjects (results available upon

request). Having subjects play both roles has the further advantage of allowing us to examine

how beliefs relate to a subject’s own reciprocating decision. All subjects sequentially participated

in three tasks: 1) a task to elicit ‘trust equivalents’; 2) the trustee’s decision on whether to split

the pie equally or unequally; and 3) a series of binary choices to elicit revealed beliefs about

reciprocation. Below, we describe each part in turn.

2.2 Trust equivalents

We use trust equivalents to measure trust—a version of the trust game fashioned after the bina-

rized version of Bohnet and Zeckhauser (2004) and Trautmann, van de Kuilen and Zeckhauser

(2013). The game is shown in figure 1. Binarizing the response has the advantage that re-

ciprocators only need to take one simple decision, and that the monetary consequence of that

decision are clear and transparent. Equalizing the outcomes of the trustor and trustees eliminates

concerns for others’ outcomes and reduces efficiency concerns. Other than in the binary choice

version of the game, however, we determine the sure amount paid to both players that makes the

decision-maker indifferent between delegating the decision of splitting the pie to the trustee, and

accepting a sure amount for both players. Determining a trust equivalent (TE ) in this way gives

us a rich measure of trust, while eliminating potential endowment effects that could otherwise

introduce additional heterogeneity in behaviour.

The trust equivalent was always elicited in the first part of the experiment. This allowed us to
4The video instructions are available online. First video for the trust game:

https://youtu.be/56aBLsM0Cpghttps. Second video for the beliefs elicitation: https://youtu.be/M7ys63m8TfM
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(x∗
t , x

∗
t ) ∼

P (R)
(150, 150)

1− P (R)
( 80, 220)

Figure 1: Trust equivalents

fully describe the trust game, and was meant to reduce contamination effects from reciprocating

decisions. The outcomes, denominated in Moroccan Dirhams (Dhs), constitute significant sums

of money for our participants (at the time of the experiment, Dhs 10 corresponded approximately

to e1). The sure outcome x changed between Dhs 80 and Dhs 150 in steps of Dhs 5. To help

subjects converge to the point of indifference, a bisection procedure was implemented starting

from a randomly selected point. Subjects could thus focus on a simple binary choice at a time.

After 5 choices, a point of indifference was reached.

Figure 2: Slider to adjust choices after bisection procedure

To avoid issues with incentive-compatibility arising from the use of bisection methods, subjects

were told that this procedure served purely the purpose of helping them to fill in an underlying

list, based on which they would be paid. Once the list had been filled in, they were able to revisit

their choices, and to adjust them in case they did not feel comfortable with them. A screenshot

of the procedure is shown in figure 2. Once they had reviewed their choices and potentially
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adjusted their preference, they could confirm their choice and move on to the following task.

2.3 The trustee’s decision

After responding to the trust equivalent question, each participant took on the role of trustee

and chose between two possibilities on how to split the pie. Subjects were informed that the role

counting for the actual payment would be randomly assigned in the end, and that their decision

could thus determine their own payoff, as well as the payoff of another person in the role of

the trustor (neutrally called ‘player 1’ in the instructions), with whom they would be randomly

paired. Given that the game had already been explained, the explanations for this part were

fairly short due to the binary nature of the game. Subjects learned that they had been entrusted

with Dhs 300, and that they got to make the final decision on how to split that money. The

two options were an ‘equal split’, with Dhs 150 being paid both to themselves and to the other

person with whom they would be paired; and an ‘unequal split’, whereby they could split the

amount in such a way as to give Dhs 80 to the person they were paired with, while attributing

Dhs 220 to themselves.

2.4 Eliciting beliefs about the proportion of reciprocators

Our main interest is the subjective probability distribution subjects hold over the proportion of

reciprocators in the population. To make the problem as intuitive as possible, we formulated all

choices based on the number of people out of 100 choosing an equal split of the pie in step 2

above. We developed a binary choice procedure that allows us to collect information on which of

two events is considered more likely. This emulates methods based on the idea of exchangeable

events used in Baillon (2008) and Abdellaoui, Baillon, Placido and Wakker (2011). Being based

entirely on independent binary choices, however, the method circumvents the issues of incentive

compatibility and error propagation incurred by the latter.

All bets are placed to obtain a fixed prize of Dhs 100 or else 0. A bet on an uncertain event E

consequently corresponds to the gamble that pays 100 if the event occurs and nothing otherwise,

which we denote 100E0. The use of such bets serves to keep the task simple for subjects, who

could thus focus on the cutoff points of the two events since everything else was constant. In our

experiment, events are generated by the same source of uncertainty: the number of subjects out

of 100 splitting the pie equally. We assume that the value of the gamble 100E0 is given by

πEu(100) + (1− πE)u(0),
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Figure 3: Screenshot of belief elicitation task

where πE stands for the decision maker’s willingness to bet on event E, and u stands for the

utility function. This general model intersects a series of non-expected utility models that do not

postulate that willingness to bet πE coincides with the subjective probability of event E (multiple

prior models as in Gilboa and Schmeidler, 1989, Ghiradato et al., 2003; rank-dependent utility

as in Wakker 2010, and models based on probability intervals as in Manski, 2004).

We assume that there exists a subjective probability measure P (.) on the state space, (the

proportion of subjects splitting the pie equally) that holds without committing to expected utility

maximization (Machina and Schmeidler, 1992; Trautmann and van de Kuilen, 2015). Combining

these assumptions means that there exists a distortion function f such that, for any event E,

πE = f(P (E)). As a consequence, the gamble 100A0 is preferred to 100B0 implies that the

subjective probability of A is at least as large as that of B, i.e., P (A) ≥ P (B).5

In other words, we use outright choice between bets generated by the same source of uncer-

tainty to elicit subjective probabilities. This reduces to circumventing the effects of the curvature

of f and u. Our method is cognitively simpler than methods based on exchangeability (Baillon,

2008; Abdellaoui et al., 2011; 2024), and it is further not affected by error propagation. Unlike

previous methods based on exchangeability, our outright choices involve events that are not nec-

essarily adjacent, which allows to compare "tail events" laying at the two extreme sides of the
5Specifically, preferring 100A0 to 100B0 means that πA ≥ πB . As f is strictly increasing from [0, 1] into [0, 1],

P (A)(B) results.
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domain. Eventually, our method circumvents the complexity of using risk to calibrate subjective

probabilities as in the matching probability method (e.g., Abdellaoui et al., 2024).
6

We selected the choice tasks based on simulations such as to allow us to recover a wide

range of mean and concentration parameters that might characterize subjects’ beliefs. The tasks

comprised the comparison of bets on events partitioning the whole state space (e.g., betting

on less than 50 reciprocators versus 50 or more out of 100), the comparison of bets on “tail”

events (e.g., betting on between 0 and 20 reciprocators, versus between 80 and 100), as well

as betting on “internal” events versus their complement (e.g., a bet on there being between 20

and 50 reciprocators inclusive, versus the complement, made up of less than 20 or more than

50). We used a total of 39 unique binary choice tasks—Table 3 in Appendix B.1 shows the full

list of choices. 5 randomly selected tasks were furthermore repeated, to allow for the better

quantification of errors.

2.5 Econometric Recovery of Beliefs

We assume that beliefs are captured by a Beta distribution which appears a natural choice

for the proportions we investigate, and which provides much flexibility in capturing different

belief patterns. Let R be the proportion of reciprocators in the group. We can then write the

probabilistic belief of a subject i about R as follows:

Pi(R |αi, βi) = B(αi, βi). (1)

For computational convenience, we reparametrize the Beta using its mean, µi = αi
αi+βi

, and

its concentration κi = αi + βi. This is usually helpful in estimations, as µi and κi capture

orthogonal dimensions. Consistent with the interpretation of κi in terms of confidence, this

parameter can also be considered as revealing the cumulative experience a decision-maker has

in similar situations (Aydogan, Baillon, Kemel and Li (2022)), with confidence thus increasing

with past experience in similar situations. The shape parameters then obtain as αi = µi κi and

βi = (1− µi)κi.7

6For instance, Trautmann and van de Kuilen (2015) use a version of the matching probability method that
assumes that the above model holds for both risk and uncertainty to infer the subjective probability of E from a
matching probability, i.e., the objective probability p that makes the agent indifferent between 100E0 and 100p0.

7An alternative measure of dispersion one could use is the variance of the Beta distribution, ν2 = αβ
(α+β)2(α+β+1)

.
Such a measure has an interesting interpretation especially when applied to the performance of financial assets.
It does, however, have the drawback the variance will be correlated with the mean for mechanical reasons, thus
being less convenient in estimations. That being said, all the effect we present in this paper remain qualitatively
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The Beta describing the subjective probability distribution over the proportion of reciproca-

tors can now be used to predicts how a subject will choose between any given pair of events. In

practice, we will invert this process by using the choices between events to estimate the unknown

distribution governing a subject’s choices. Let Pi(E
A
j ) and Pi(E

B
j ) denote the subjective prob-

abilities of the events entailed by "Option A" and "Option B" in the jth task. We can define

these probabilities as follows

Pi(E
A
j ) = F(uA |µiκi, (1− µi)κi)−F(ℓA |µiκi, (1− µi)κi)

Pi(E
B
j ) = F(uB |µiκi, (1− µi)κi)−F(ℓB |µiκi, (1− µi)κi),

where F designates the cumulative distribution function of the Beta distribution in (1), and u

and ℓ stand for the upper and lower bounds of the events in option A and option B, as indicated

by the respective subscripts. This shows how the subjective probabilities capture the probability

mass attributed to each given event by the underlying Beta.8

Given this setup, subject i will choose Option A over Option B whenever Pi(E
A
j ) ≥ (Pi(E

B
j ),

or else will display the opposite choice pattern. We thus estimate the probability of subject i

choosing Option A over Option B in choice j using the following logistic regression:

Prji [A ≻ B] = Bern
[
logit−1

(
Pi(EAj )− Pi(EBj )√

2σ

)]
, (2)

where Bern indicates the Bernoulli distribution, and logit−1 the inverse-logit link function. The

scaling by
√
2 serves merely to standardize the variance (Train, 2009).

We use a fairly minimal set of binary choices to elicit beliefs to showcase the viability of

our method for applied work. To deal with the resulting uncertainty surrounding estimated

parameter values, we use a random-parameter or hierarchical setup in which individual-level

parameters are modelled as being drawn from an overarching distribution describing the entire

experiment. Let θθθi = {logit−1(µi), log(κi)} be a vector of individual-level parameters, where the

inverse-logit and log transformations used serve to enforce the constraints arising from the Beta

distribution. We can model the individual-level parameters as being drawn from a distribution

stable if we use the variance instead of the concentration of the Beta distribution.
8In some tasks, subjects could earn a prize based on a the union of two disjoined events, e.g. based on their

being either less than 20 or more than 60 reciprocators. In those cases, we formally estimate the probability over
the single, joint event first (e.g., there being between 20 and 60 reciprocators inclusive in the example above),
and then define the winning probability as its complementary probability. See online appendix A for details and
the annotated Stan code used in our estimations.
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describing the subjects in the experiment as follows:

θθθi ∼ mN (θ̂̂θ̂θ , Σ), (3)

where mN designates the multi-normal distribution, θ̂̂θ̂θ = {µ̂, κ̂} is a vector of aggregate means

of the parameters, and Σ is a covariance matrix of the parameters. The aggregate parameters

will thus act as endogenously-estimated priors for the individual-level parameters. While we

need to specify hyperpriors for the aggregate parameters, which choose these to be one order of

magnitude wider than the effects we would expect based on the scale of the data, thus assuring

that they will not sway our results (a robustness analysis confirmed that this is indeed the case).

The hierarchical setup we use has the advantage that individual-level estimates will be

weighed by their endogenously estimated reliability. That can be done because model param-

eters are themselves uncertain quantities in the Bayesian setup we use. Take e.g. µML
i , the

estimated mean belief for subject i in a maximum likelihood estimation. The estimate for µML
i

will typically follow an approximately normal distribution, so that we can model:

µML
i ∼ N (µi, τ

2
i ),

µi ∼ N (µ̂,Σ11),

where τi captures the uncertainty surrounding to the maximum likelihood estimate of the mean

belief (i.e. the standard error of the maximum likelihood estimate), µi is as usual the posterior

estimate conditional on the aggregate mean µ̂, and Σ11 is the upper left element of the covariance

matrix of the parameters, capturing the between-subject variance of µi. This model thus takes

the form of a measurement error model, as often used in meta-analysis (see Brown, Imai, Vieider

and Camerer, 2022, for the details of such a model). The posterior parameter will thus be shrunk

towards the prior in proportion to the distance from the prior and its noisiness:

µi =
Σ11

Σ11 + τ2i
µML
i +

τ2i
Σ11 + τ2i

µ̂.

This has the advantage of discounting noisy outliers, which could otherwise be influential given

the risk of overfitting when applying maximum likelihood techniques to small datasets (cfr.

Bishop, 2006, chapter 3).9 The method is thus explicitly geared at maximizing the predictive
9We here use the term ‘maximum-likelihood estimation’ to refer to individual-level estimations. Maximum

likelihood techniques have also been adapted to estimate ‘empirical Bayes’ hierarchical models, which are however
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performance of the estimates, even if this comes at the expense of individual-level fit, especially

when the data are noisy. Indeed, it is easy to see that for noiseless observations, for which τi → 0,

the posterior estimate µi → µML
i .

We estimate the model in Stan (Carpenter, Gelman, Hoffman, Lee, Goodrich, Betancourt,

Brubaker, Guo, Li and Riddell, 2017) using Hamiltonian Monte Carlo simulations. We launch

Stan from an algorithm R (https://www.rproject.org) using CmdStanR (Gabry and Češnovar,

2021). Covergence was carefully checked using best practices recommended by the Stan commu-

nity. Online Appendix A provides the annotated code for the estimations we use and provides

further technical details. Vieider (2024) provides a tutorial on the Bayesian estimation of decision

models in Stan.

3 Results

3.1 Descriptive Statistics

We start by describing subjects’ probabilistic beliefs about reciprocation. Before we start with

the parametric estimation, however, we can try and get a feel for the data by examining choice

proportions. A choice of special interest is the one between a bet on there being less than 50

reciprocators, or 50 or more. In this task, 58.7% of all subjects chose the option paying the prize

if less than 50 subjects reciprocate, thus indicating a revealed majority belief that less than 50%

of trustees will split the pie evenly. Nevertheless, only 26.8% of respondents reveal a belief that

less than 25% of reciprocating trustees is more likely than there being between 25% and 50%.

60.1% believe that it is more likely that the number of reciprocators falls between 40 and 50 than

between 50 and 60, and 65.4% believe that there being between 50% and 60% of reciprocators

is more likely than there being between 60% and 70%. Table 3 in Appendix B.1 presents a

complete list of the comparisons including the choice proportions.

Several choices are of the type EA = [0.5− s
2 , 0.5+

s
2 ] and EB = Ec

A (EB is the complementary

event of EA). Figure 4 plots the proportion of choices of EA as a function of s, i.e. as a function of

the size of event EA. It conveys two key results. First, on average subjects satisfy monotonicity

with respect to s—the larger the event, the higher the choice proportion of that event. Second,

when s = 0.5, the percentage of preference for EA is significantly larger than 50%, meaning

that the event [0.25, 0.75] (there being between 25 and 75 reciprocators inclusive out of 100) is

fundamentally Bayesian. In that case, the intuition will be the same as presented here, except that the hyperpriors
will be uniform over the entire support of the parameters, and that a interpretation of the estimated parameters
as uncertain quantities is not warranted.
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perceived as more likely than the complementary event [0.25, 0.75]c. This shows that on average

subject tend to have beliefs that peak towards the middle of the event space.
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Figure 4: Choice between complementary events: EA = [0.5− size
2

, 0.5 + size
2

] vs EB = Ec
A

3.2 Estimation of belief distributions

Figure 5 shows a scatter plot of the mean belief about the proportion of reciprocating subjects,

µi ≜
αi

αi+βi
, against the concentration, κi ≜ αi+βi, which we interpret as a measure of confidence

in the mean belief. Panel A shows a scatter plot between the two measures, which can be seen to

be orthogonal to each other (ρ = −0.091, p = 0.306, Spearman rank correlation). Few subjects

believe that more than 75% of reciprocators split the pie evenly, whereas a sizeable minority

believes that fewer than 25% do so. The median belief estimate is about 45%, and does not fall

far from the true proportion of reciprocators, which is 0.496 (dashed blue vertical line). Subjects

who themselves split the pie unevenly in their own favour tend to be more pessimistic. To the

extent that they are optimistic, however, they seem to have low confidence in such beliefs, as
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witnessed by the large number of unequal splitters in the lower right part of the figure.
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Figure 5: Belief distributions

Panel B shows some typical belief distributions. Subject 103 has a belief distribution that

peaks just below 0.5, but which is extremely flat, showing very low confidence in that estimate.

Subjects 93 and 69 have highly peaked distributions, but with very different means. Subject 16 is

very pessimistic, albeit with a fair degree of uncertainty about that estimate, whereas subject 121

is very optimistic, but even less confident about that measure. Nevertheless, these two subjects

are clearly separated in that the great majority of the subjective probability mass falls either

above or below 0.5.

Table 1: Correlations between different belief measures

dep var: TE WVS trust2 trust3 quant. mean Beta

WVS 1 − − − −
helpful 0.392∗∗∗ 1 − − −
fair 0.386∗∗∗ 0.411∗∗∗ 1 − −
quantitative 0.380∗∗∗ 0.306∗∗∗ 0.342∗∗∗ 1 −
mean Beta 0.170∗ 0.189∗∗ 0.180∗∗ 0.644∗∗∗ 1

The coefficient listed in the table indicate Spearman rank correlation coefficients.
Stars indicate the following significance levels: ∗ 10%; ∗∗ 5%; ∗∗∗ 1%.

Next, we explore the correlations between the different trust measures. Table 3 shows Spear-

man rank correlations between the different measures. The qualitative survey measures show

correlation coefficients around 0.4 with each other, all of which are highly significant. Corre-

lations of the survey measures with the introspective quantitative measure are somewhat lower
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and range between 0.3 and 0.4, but are still highly significant. The survey measures, however,

correlate decidedly less well with the estimated mean belief, with correlations invariably below

0.2. By far the largest correlation, however, is the one observed between the estimated mean

belief measure and the quantitative hypothetical measure, which comes to book at about 0.64.

Revealed beliefs thus seem to line up with introspective, declared beliefs.

Beyond the mean estimates, we will use measures of the confidence subjects have in their own

mean beliefs. Given the Bayesian setup we use, we can further describe the estimated parame-

ters as probability distributions capturing posterior uncertainty about the estimated parameter

values. This is paramount in the current setting, given the minimal set of stimuli that we used

to identify beliefs.
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Figure 6: Forest Plots

Figure 6 plots the means and 95% highest density intervals (HDI)10 of the posterior distri-

butions of the mean, µi and logged concentration parameters, log(κi), for 27 randomly selected

subjects (the parameters of all subjects are reported in the Online Appendix). Posterior dis-

tributions of µi are symmetric since the mean estimates generally correspond to midpoints of
10A HDI is the narrowest interval that contains the specified amount of probability mass.
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HDIs. The mean estimates for the concentration parameters, however, fall in the lower half of

their posterior distributions which also have longer right tails, which is why we modelled their

distribution using log-normals.11

3.3 Explaining trust equivalents

The principal measure used to validate our various measures of beliefs is their performance in

explaining trust equivalents (TEs). Figure 7 shows the distribution of the trust equivalents to

be explained, quantified as the midpoint between the last amount x for which a subject has

chosen to trust, and the first sure amount for which they have chosen not to trust. Most of

the trust equivalents we observe fall between Dhs 80 and Dhs 120, reflecting fairly low levels of

trust. An outlying group of subjects displays high levels of trust. A few subjects either always

chose the sure amount (2/127) or always chose to trust (4/127). Note that such preferences are

legitimate in the trust game, as they may reflect extreme aversion to or preference for inequality

(see Nunnari and Pozzi, 2022, for a meta-analysis of envy parameters). In what follows, our main

interest resides in the extent to which different measures of probabilistic beliefs can account for

the observed trusting behaviour.
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Figure 7: Belief distributions

In this section, we regress trust equivalents on various measures of beliefs and some control

variables. We account for measurement uncertainty in our dependent variable by using an interval
11It is typical for variables constrained to be positive to follow skewed distributions. In our setting, using the

log-normal ensures that this constraint is met. Limpert, Stahel and Abbt (2001) examined a variety of data sets
across the sciences, and concluded that they could not find a single case in which the normal fit the data better
than the log-normal.
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regression. We furthermore use outlier-robust regressions throughout, taking the form of student-

t distributions with 3 degrees of freedom (see Gelman, Carlin, Stern, Dunson, Vehtari and Rubin,

2014, section 17.5). This helps to guard against disproportionate effects of precisely estimated

outliers (given that imprecise outliers will be discounted within our Bayesian hierarchical setting).

The belief distributions based on choices between events are always estimated within one and the

same econometric model containing the regression, so that the full posterior uncertainty about

the belief parameters is taken into account in the regression.

We estimate the relationship between the parameters characterizing subjective belief distri-

butions and ranges that contain the "true" values of trust in a linear interval regression model.

To do this, let TE∗
i denote the "true" value of the trust equivalent for subject i. We assume

that TE∗
i has mean µTE∗

i
, which is given by:

µTE∗
i
= γ0 + γ1ϕi + γ2κi. (4)

The parameters of interest are thus γ1 and γ2, which are the coefficients of the mean and con-

centration parameters of belief distributions, respectively. Further, let li denote the highest sure

amount that subject i gives up to choose to leave the decision to the trustee and hi denote the

lowest sure amount that subject i accepts instead of leaving the decision. The consecutive values

li and hi thus define the lower and upper bounds of the interval that contains the "true" but

unknown value. In the case of subjects always choosing to trust or always choosing the sure

amount, we leave the interval open-ended to one side. This setup therefore allows us to take

the uncertainty in our dependent measure into account. Appendix A provides details and the

provides the annotated code.

Table 2 shows the results of the TEs interval regressions, estimated by Bayesian procedures.

Regressions I - III regress the TEs on qualitative survey questions about trust. Regression I uses

the popular measure from the World Value Survey, although with an 11-point answer scale such

as used e.g. in the European Social Survey. The question has significant explanatory power,

with an R2 of 0.056.12 Regression II uses the question on whether “people try to be helpful”, and

regression III the one suggesting that “people try to be fair” from the GSS.13 These questions
12The measure of explained variance is calculated as R2 = 1−ω2

m/ω2
0, where ω2

0 captures the variance in a model
empty of covariates (intercept only), and ω2

m is the variance in the comparison model including various covariates.
13The precise formulation of the questions is: WVS: “Generally speaking, would you say that most people can

be trusted or that you can’t be too careful in dealing with people?”; GSS1: “Would you say that most of the time,
people try to be helpful, or that they are mostly just looking out for themselves?”; and GSS2: “Do you think that
most people would try to take advantage of you if they got the chance or would they try to be fair?”

17



3.3 Explaining trust equivalents 3 RESULTS

perform decidedly less well. They are neither statistically significant, nor do they explain the

variance in TEs. Regression IV regresses trust on the answer to the quantitative introspective

question of how many out of 10 participants are believed to choose an equal split on average.

The measure is clearly predictive of trusting behaviour, and explains some 4.4% of variation in

trust.

Table 2: Regression of trust on beliefs

dep var: TE Reg. I Reg. II Reg. III Reg. IV Reg. V Reg. VI Reg. VII

WVS trust 1.612
(0.718)

helpful 0.053
(0.676)

try to be fair -0.415
(0.597)

equal split 1.659
(0.697)

mean belief 23.725 24.816 24.864
(8.978) (8.795) (9.062)

confidence in belief 0.385 0.437
(0.182) (0.175)

risk tolerance 1.753
(0.554)

age, gender NO NO NO NO NO NO YES

constant 99.061 104.449 106.486 96.967 93.751 87.634 64.718
(2.888) (3.350) (2.972) (3.514) (4.349) (4.955) (17.738)

obs. 5588 5588 5588 5588 5588 5588 5588
subjects 127 127 127 127 127 127 127
R2 0.056 0.002 0.011 0.044 0.077 0.208 0.252

Effects if age and gender are not shown for parsimony, and are not significant at conventional levels. However,
gender = 1 is significantly negative at the 10% level.

Regression V uses the revealed preference measure for the mean belief about reciprocation,

µi. This measure has a special place, inasmuch as it is the theoretically correct measure to use

under subjective expected utility, as well as models that inherit its use of point-beliefs, such

as prospect theory. The effect of the mean belief is highly significant, and explains 7.7% of

the variance in TEs. Regression VI further adds the concentration of the Beta distribution as a

measure of confidence in beliefs. While irrelevant based on SEU and PT, this measure is predicted

to play an important role by multiple prior models. The effect of the mean belief measure

results further reinforced by the insertion of the confidence measure. Furthermore, the confidence

measure itself is a highly significant predictor of trust, which—ceteris paribus—increases in the
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confidence measure. Remarkably, inserting confidence into the regression brings the explained

variance from 8% to over 20%, thus showing just how important it is to account for confidence in

beliefs. Regression VII further adds the measures of declared risk tolerance validated by Dohmen,

Falk, Huffman, Sunde, Schupp and Wagner (2011) and Vieider, Lefebvre, Bouchouicha, Chmura,

Hakimov, Krawczyk and Martinsson (2015), and inserts additional controls for age and gender.

Risk tolerance has a significant positive influence on trust, and brings the explained variance to

25%.

4 Discussion and Conclusion

Beliefs play a central role in economic decisions, yet the comparative performance of different

belief measurements remains woefully under-investigated. Running a horse-race between intro-

spective measures and incentivized measures of varying degree of complexity, Trautmann and

van de Kuilen (2015) concluded that there is little if any evidence that more complex measures

perform better. Here, we have proposed a simple, incentive-compatible measurement method

for beliefs that relies on binary choices between bets on different events. Comparing the ob-

tained measures to qualitative and quantitative introspective measures, we have shown that our

method clearly outperforms those methods—certainly when a measure about confidence in beliefs

is added. Yet our method remains very simple for subjects to understand.

The price to pay for the behavioural simplicity of our method lies in the rather more complex

econometrics, which become necessary because we need to fit functional forms to belief distri-

butions. In our view, this added complexity for the experimenter is a price well-worth paying

for the simplicity in the elicitation design and for the incentive-compatibility of the tasks. The

method we have proposed is portable across different elicitation environments, and can further-

more easily be adapted to different sorts of distributions if called for by the particular decision

environment. Our findings have furthermore shown the importance of taking uncertainty seri-

ously, both to rein in potentially noisy outliers, and to properly deal with posterior uncertainty

about the estimated parameters.

Our findings also have important theoretical implications. In particular, the importance

of confidence in beliefs can be taken to support models from the multiple-prior family, which

postulate that aversion to ambiguity or uncertainty—two terms we use interchangeably in this

context—will be driven by lack of confidence in average beliefs. While the evidence seems less

compatible with models from the prospect theory family, our experiments were not devised as
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an explicit test of such a contrast. Indeed, the contrast between the two families of models may

have been exaggerated, inasmuch as some models can be shown to converge to similar predictions

based on particular functional forms (Ghirardato, Maccheroni and Marinacci, 2004). A careful

theoretical investigation of these issues will have to wait for future work.
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A ESTIMATION CODE AND ECONOMETRIC DETAILS

ONLINE APPENDIX

A Estimation code and econometric details

Here, we explain our Stan code used to estimate our model. Vieider (2024) provides a general

introduction to Bayesian estimation of decision making model, and a detailed tutorial how to

estimate such models in Stan. Below, you can find the annotated Stan code. We launched this

code from R using CmdStanR—see Vieider (2024) for detailed instructions and R code on how

to do that. The example code below include the regression of trust equivalent on the measures of

beliefs. Other controls can be added to the design matrix x, which should also include a column

of 1s for the intercept. Comments are preceded by //

// de s i gna t e and import data to be used in e s t imat i on :

data{

int<lower=1> N; //number o f obs .

int<lower=1> Nid ; // nr o f unique i d e n t i f i e r s ( s e quan t i a l ! )

array [N] i n t id ; // i d e n t i f i e r ( s e qu en t i a l i n t e g e r s ! )

array [N] i n t c ; // dummy ind i c a t i n g cho i c e o f opt ion A ( c=1) or B ( c=0)

vec to r [N] pa ; // lower bound o f event A

vecto r [N] qa ; // upper bound o f event A

vecto r [N] pb ; // lower bound o f event B

vecto r [N] qb ; // upper bound o f event B

array [N] i n t cc ; // dummy ind i c a t i n g complementary event

vec to r [ Nid ] t rus t_l ; // lower bound o f t r u s t equ iva l en t

vec to r [ Nid ] trust_u ; // upper bound o f t r u s t e qu i i v a l e n t

int<lower=1> co l ; // nr . o f columns in the des ign matrix

matrix [ Nid , c o l ] x ; // des ign matrix conta in ing p r ed i c t o r s

}

// de c l a r e main ( pr imitve ) parameters :

parameters {

vec to r [ 2 ] means ; // h i e r a r c h i c a l means on trnasformed s c a l e

vector<lower =0>[2] tau ; // vec to r o f parameter SDs

cho lesky_factor_corr [ 2 ] L_omega ; // Cholesky−decomposed covar iance matrix

array [ Nid ] vec to r [ 2 ] Z ; // matrix o f i nd iv idua l −l e v e l parameters , r e s c a l e d

rea l <lower=0> sigma ; // r e s i d u a l SD

r e a l bm; // c o e f f i c i e n t on mean b e l i e f

r e a l bc ; // c o e f f i c i e n t on concent ra t i on

rea l <lower=0> xi ; // SD o f robust r e g r e s s i o n

vec to r [ c o l ] gamma; // vec to r o f r e g r e s s i o n c o e f f i c i e n s

}

// trans form parameters to use in model :
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transformed parameters {

matrix [ 2 , 2 ] Rho = L_omega ∗ L_omega ’ ; // obta in c o r r e l a t i o n matrix

array [ Nid ] vec to r [ 2 ] pars ; //matrix o f i nd iv idua l −l e v e l parameters

vector<lower=0,upper=1>[Nid ] m; // ind iv idua l −l e v e l means

vector<lower=0>[Nid ] k ; // ind iv idua l −l e v e l c oncen t ra t i on s

// loop to obta in parameters on o r i g i n a l s ca l e , to be used in model :

f o r (n in 1 : Nid ){

pars [ n ] = means + diag_pre_multiply ( tau , L_omega) ∗ Z [ n ] ;

m[ n ] = inv_log i t ( pars [ n , 1 ] ) ;

k [ n ] = exp ( pars [ n , 2 ] ) ;

}

// block e s t imat ing the model

}

model{

// aux i l i a r y ( l o c a l ) v e c t o r s :

vec to r [N] muA;

vec to r [N] muB;

vec to r [N] muB0;

vec to r [ Nid ] mu;

tau ~ exponent i a l ( 5 ) ; // p r i o r f o r parameters SDs

L_omega ~ lk j_corr_cholesky ( 3 ) ; // p r i o r f o r Cholesky−decomposed co r r . matrix

means [ 1 ] ~ normal (0 , 1 0 ) ; // p r i o r f o r mean aggregate b e l i e f ( transformed s c a l e ! )

means [ 2 ] ~ normal (0 , 1 0 ) ; // p r i o r f o r mean aggregate concent ra t i on ( transformed s c a l e ! )

sigma ~ normal (0 , 2 0 ) ; // p r i o r r e s i d u a l var i ance b e l i e f s

x i ~ normal (0 , 200 ) ; // p r i o r r e s i d u a l var i ance r e g r e s s i o n

bm ~ normal (0 , 200 ) ; // p r i o r c o e f f i c i e n t on mean b e l i e f

bc ~ normal (0 , 200 ) ; // p r i o r c o e f f i c i e n t on concent ra t i on

gamma ~ normal (0 , 200 ) ; // p r i o r on r e g r e s s i o n c o e f f . vec to r

f o r (n in 1 : Nid )

Z [ n ] ~ std_normal ( ) ; // p r i o r on transformed ind iv idua l −l e v e l pars

// model e s t imat i on in loop :

f o r ( i in 1 :N ) {

muB0[ i ] = beta_cdf ( qb [ i ] | m[ id [ i ] ] ∗ k [ id [ i ] ] , // Beta CDF opt ion B

(1 − m[ id [ i ] ] ) ∗ k [ id [ i ] ] ) −

beta_cdf (pb [ i ] | m[ id [ i ] ] ∗ k [ id [ i ] ] ,

(1 − m[ id [ i ] ] ) ∗k [ id [ i ] ] ) ;

muB[ i ] = muB0[ i ]^(1 − cc [ i ] ) ∗ (1 − muB0[ i ] )^ cc [ i ] ; // Beta CDF complement o f opt ion B

muA[ i ] = beta_cdf ( qa [ i ] | m[ id [ i ] ] ∗ k [ id [ i ] ] , // Beta CDF opt ion A

(1 − m[ id [ i ] ] ) ∗ k [ id [ i ] ] ) −
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beta_cdf ( pa [ i ] | m[ id [ i ] ] ∗ k [ id [ i ] ] ,

(1 − m[ id [ i ] ] ) ∗ k [ id [ i ] ] ) ;

c [ i ] ~ b e r n ou l l i_ l o g i t ( (muA[ i ] − muB[ i ] ) / ( s q r t (2 ) ∗ sigma ) ) ; // model e s t imat i on

}

// r e g r e s s i o n o f t r u s t e q u i i v a l e n t s :

f o r (n in 1 : Nid ){

mu[ n ] = x [ n ] ∗ gamma + bm ∗ m[ n ] + bc ∗ k [ n ] ; // r e g r e s s i o n

// student−t robust r e g r e s s i o n :

t a r g e t += log_dif f_exp (

student_t_lcdf ( trust_u [ n ] | 3 , mu[ n ] , x i ) ,

student_t_lcdf ( t rus t_l [ n ] | 3 , mu[ n ] , x i ) ) ;

}

}

B Additional results

B.1 Binary Choice Tasks and Choice Proportions

B.2 Forest Plots of µ and κ for the remaining subjects
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Figure 8: Forest Plots 1
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Figure 9: Forest Plots 2
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Table 3: The List of Binary Choice Problems

Task ID EAj EBj % Option A Task ID EAj EBj % Option A

1 [0,0.10) (0.9,1] 60.6 21 [0.25,0.75] [0,0.25) 80.3
2 [0,0.20) (0.80,1] 56.7 22∗ [0.25,0.75] [0,0.25) ∪ (0.75,1] 69.7
3 [0,0.25) [0.25,0.5] 26.8 23∗ [0.25,0.75] (0.75,1] 87.8
4 [0,0.25) (0.50,0.75] 48.8 24 [0.30,0.40) [0.40,0.50] 48.8
5∗ [0,0.25) (0.75,1] 59.8 25 [0.30,0.40) [0.60,0.70] 58.2
6 [0,0.33) (0.66,1] 62.9 26 [0.33,0.66] [0,0.33) 61.4
7 [0,0.40) (0.60,1] 62.2 27 [0.33,0.66] [0,0.33) ∪ (0.66,1] 44.9
8 [0,0.45) (0.55,1] 60.6 28 [0.33,0.66] (0.66,1] 80.3
9∗ [0,0.50) [0.50,1] 58.6 29 [0.40,0.50] [0.50,0.60] 60.6
10∗ [0.10,0.30] [0,0.10) ∪ (0.30,1] 21.2 30 [0.40,0.60] [0,0.40) 42.5
11 [0.10,0.50] [0,0.10) ∪ (0.50,1] 52.7 31 [0.40,0.60] [0,0.40) ∪ (0.60,1] 19.7
12 [0.10,0.90] [0,0.10) 85.8 32 [0.40,0.60] (0.60,1] 68.5
13 [0.10,0.90] [0,0.10) ∪ (0.90,1] 84.2 33 [0.45,0.55] [0,0.45) 32.3
14 [0.10,0.90] [0.90,1] 92.9 34 [0.45,0.55] [0,0.45) ∪ (0.55,1] 6.3
15 [0.20,0.40] [0,0.20) ∪ (0.40,1] 31.5 35 [0.45,0.55] (0.55,1] 51.2
16 [0.20,0.80] [0,0.20) 78.7 36 [0.50,0.60) [0.60,0.70] 65.3
17 [0.20,0.80] [0,0.20) ∪ (0.80,1] 81.1 37 [0.50,0.90] [0,0.50) ∪ (0.90,1] 40.1
18 [0.20,0.80] (0.80,1] 92.9 38 [0.60,0.80] [0,0.60) ∪ (0.80,1] 18.9
19 [0.25,0.50) [0.50,0.75] 60.6 39 [0.70,0.90] [0,0.70) ∪ (0.90,1] 19.7
20 [0.25,0.50) (0.75,1] 77.1

Superscript ∗ indicates that the task has been shown to subjects twice.
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Figure 10: Forest Plots 3
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