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Abstract

I propose and test a model whereby well-known empirical deviations from ex-
ponential discounting emerge from the optimal Bayesian combination of noisily per-
ceived time delays with a learned prior summarizing the statistics of the environment.
This results in a generative account of delay-discounting which reconciles behavioural
patterns that have thus far been modelled mostly separately, and which cannot be
captured by any one existing model. The model predictions obtain based on a set of
assumptions that are plausible from a neuro-biological point of view, and which have
been shown to organize empirical findings across different decision domains. I test
the model in two pre-registered experiments by manipulating the key mechanisms
underlying its behavioural predictions—perceptual noise, and the statistics of the
environment. The results show a distinctive empirical fingerprint that cannot be
organized by existing models of delay-discounting.

1 Motivation

Humans as well as animals have long been known to substantially discount future

rewards. To use an example from a classroom experiment, an outcome received 6

weeks from now was considered only as good as 86% of that same outcome received

immediately (point A in figure 1). This implies an annualized discount rate in
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excess of 300% assuming continuous compounding. This finding appears even more

puzzling when one considers that it has been obtained using monetary payoffs.

Substantial discounting for money is paradoxical from an economic point of view,

since one would need to assume immediate consumption of any monetary payouts

to explain it (Cohen, Ericson, Laibson and White, 2020). Cubitt and Read (2007)

show that for discount rates exceeding the market borrowing rate—as is clearly the

case here—no inferences can be drawn on time preferences at all if one assumes

agents to abide by standard principles of economic rationality.

Figure 1: Nonparametric discount functions based on different time delays
Patterns shown are based on an incentivized classroom experiment with 175 students, using tradeoffs between
smaller-sooner and larger-later rewards (see Online Appendix F). The figure shows discount functions obtained
based on different types of choice stimuli. The function labelled ‘delays from present’ uses delays of 6, 12 and 24
weeks from the present. The ‘6 week delays’ function is obtained by using delays of 6 weeks from the present, 6
weeks from 6 weeks, 6 weeks from 12 weeks, and 6 weeks from 18 weeks, so that the discount factor for a 12-week
delay, δ12, is calculated as δ12 = δ0,6×δ6,12, where the subscripts indicate the sooner and later time delays attached
to the smaller and larger payoffs, respectively. Following the same procedure, we obtain δ18 = δ0,6 × δ6,12 × δ12,18
, and δ24 = δ0,6 × δ6,12 × δ12,18 × δ18,24.

Choice patterns in inter-temporal tradeoffs further deviate systematically from

the predictions of the standard model of exponential discounting (Samuelson, 1937).

The curve leading up to point B in figure 1, obtained from delays of increasing length

from the present, exhibits the iconic hyperbolic shape which has received much at-

tention in the discounting literature. Compare this to the curve leading up to point

C, which has been obtained by multiplying the discount factors of subsequent 6-
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week delays from the present, from 6 weeks, from 12 weeks, and from 18 weeks. The

coexistence of these two patterns challenges the majority of descriptive discounting

models—including the whole class of “hyperbolic” models—which predicts the two

curves to be the same. A further puzzle arises from the kink of the function leading

up to point C at point A, which captures present bias—a disproportionate prefer-

ence for the smaller-sooner option when it obtains immediately relative to when a

common delay is added to both options.1 This phenomenon is empirically strong

(Rohde, 2019; Imai, Rutter and Camerer, 2021; Cheung, Tymula and Wang, 2023),2

and difficult to subsume under generalized hyperbolic functions.3

The descriptive regularities discussed above have all been documented empiri-

cally and modelled formally in the literature. Yet few—if any—of the models and

functions devised to describe discounting can account for all of these facts jointly

(see review at the end of this section). Here, I ask a different albeit closely related

set of questions: where might such distinctive regularities in inter-temporal choice

originate? Could a model of the generative process reconcile the different types of

behaviour that have been observed? Can this be done based on principles that are

plausible from a neuro-biological perspective? And should we expect the same gen-

erative processes to underpin behaviour across different decision domains beyond

delay-discounting? The last point is paramount for a neuro-biologically inspired ap-

proach, as we would expect the same principles of efficient information processing

to leave a distinctive fingerprint across decision domains.
1Present bias naturally emerges from a wide class of weighted discount functions. For instance,

Sozou (1998) showed how present-biased behaviour may emerge from uncertain hazard rates.
Jackson and Yariv (2014) documented the emergence of present bias from the social aggregation
of heterogenous preferences. Ebert, Wei and Zhou (2020) show that present bias can emerge based
on a broad class of weighted functions, resulting e.g. from decision-makers’ uncertainty about the
correct discount rate to apply in a given situation.

2Online Appendix F presents additional results from the classroom experiment showing that the
differences in choice proportions resulting in this kink are statistically significant and economically
sizeable. See also experiment I below for further results.

3Impatience measured using delays of increasing length from the present, using delays of con-
stant length pushed from the present into the future, and using delays of constant length pushed
farther into the future from an initial upfront delay typically displays quantitatively and even qual-
itatively distinct patterns—see review of the literature at the end of this section, and the evidence
from the experiments. Fitting these patterns with one and the same “hyperbolic” function will
produce a poor empirical fit. Even more importantly, the predictive value of any fitted function for
future behaviour will be severely limited by the fact that behaviour differs systematically across
the different delay types.
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Here, I present a model of delay-discounting based on the premise that peo-

ple take decisions based on noisy mental representations of choice objects, and in

particular, of time delays.4 Noisy representations of time delays may arise from

quick and approximate assessments of inter-temporal tradeoffs, or because time is

inherently complicated to quantify objectively for a biological organism. I show

that—if delays are perceived with some noise—then it will be optimal to rein in

this noise by combination with a Bayesian prior enshrining the statistics of the en-

vironment, which needs to be learned based on the very same noisy perceptions.

The combination of signal and prior will in turn result in systematic deviations

from the exponential benchmark. In particular, it will produce both the appar-

ently hyperbolic shape observed for delays from the present leading up to point B,

and the steep discounting observed for shorter time delays leading up to point C.

The setup furthermore predicts a disproportionate preference for the present as a

separate behavioural phenomenon, thus providing cognitive microfoundations for

quasi-hyperbolic discounting (Phelps and Pollak, 1968; Laibson, 1997).5

The model predictions arise from principles that are plausible from a neuro-

biological point of view. In particular, I show that the stylized discounting patterns

described above obtain from a choice rule trading off exponentially discounted re-

wards.6 This choice rule can be mapped into a log-odds representation, which gen-

erates the model’s key predictions. Such log-odds representations have been used

to explain small-stake risk aversion and probability distortions in decisions under

risk (Zhang and Maloney, 2012; Zhang, Ren and Maloney, 2020; Khaw, Li and

Woodford, 2021; 2023). It has further been argued that log-odds representations

may underly neural representations of choice objects in general, based both on prin-
4While I specifically focus on the noisy perception of time delays, augmenting this pespective

with the noisy perception of rewards does not impact the conclusions I draw below—see Online
Appendix B for a generalization.

5It may seem odd that systematic biases could arise from neural mechanisms, which would
have evolved to optimally guide behaviour across a wide variety of contexts. Such biases, however,
commonly arise from resource constraints, and can result from processes that are highly adaptive
from an evolutionary point of view—see e.g. Robson (2001), Robson and Samuelson (2011), Netzer
(2009) and Herold and Netzer (2023) for examples.

6This does not imply that a decision-maker consciously tries to implement such a choice rule.
The framework I present is best thought of as arising from working mechanisms internal to the
mind, which may have arissen from evolutionary pressures, and which are typically beyond the
reach of the consciousness of the decison-maker.
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ciples of efficient representation (Gold and Shadlen, 2001; 2002), and on distinctive

empirical footprints in observable behaviour (Glanzer, Hilford, Kim and Maloney,

2019). Bayesian combination of evidence and prior constitutes the key working hy-

pothesis underlying brain functioning in neuroscience (Ting, Yu, Maloney and Wu,

2015; Wei and Stocker, 2015; Ma, Kording and Goldreich, 2023).

The model I propose contributes to a unified theoretical representation of decision-

generating processes. The formal principles underlying the model, down to the very

log-odds choice rule, are identical to those used for the modelling of small-stakes risk

aversion and probability distortions (Khaw et al., 2021; Vieider, 2023). L’Haridon,

Oprea, Polania and Vieider (2023) use an identical formal setup to illustrate the

cognitive origins of the Ellsberg paradox. In Oprea and Vieider (2023), we test a

key prediction of the noisy coding setup, according to which learning should take

place even for fully described quantities such as objective risk, and find this hypoth-

esis to be strongly supported by the data. While some of the specific assumptions

underlying the formalism may well prove contentious, the reach of the explanations

provided across different contexts suggests that the model does capture some key

aspects of the decision process.

I test the model in two pre-registered experiments devised to probe the most

distinctive implications of the noisy perception account of delay-discounting. Ex-

periment I provides a visual aid for the length of the time delay under form of a

ruler of length proportional to the delay. This intervention is designed to focus at-

tention on time delays and to make them more comparable, thereby reducing coding

noise—a key driver of behaviour according to the model. Another key implication

of the dynamic Bayesian model I present is that the parameters of the prior predict-

ing the most likely stimuli in the environment need to be inferred from the noisy

mental signals jointly with the true choice stimuli. Experiment II systematically

manipulates the statistics of the experimental environment to test this prediction.

The two experiments yield evidence in support of the key mechanisms underlying

the theoretical predictions I present. This yields a distinctive empirical fingerprint

that cannot be organized under existing discounting models.

The model shares a common formal underpinning with recent papers modelling

5



the effect of noisy, but otherwise optimal, cognitive processes in complex choice

environments (Natenzon, 2019; Khaw et al., 2021; 2023). It also presents affinities

with contributions that have showcased the importance of ‘cognitive uncertainty’

in decision making (Enke and Graeber, 2023). The model’s intuition is consistent

with experiments that have documented how patterns traditionally ascribed to pref-

erences can be triggered by the complexity of the choice situation (Oprea, 2022).

Barretto Garcia, de Hollander, Grueschow, Polania, Woodford and Ruff (2023)

show how neural activation during a numerical discrimination task predicts risk

attitudes in a behavioural experiment, thus highlighting the neural processes from

which such behaviour arises. Imitating the complexities of inter-temporal tradeoffs

in an atemporal setting, Enke, Graeber and Oprea (2023) document patterns that

closely resemble what one may consider ‘typical discounting patterns’.

There exists an extensive theoretical and empirical literature describing the styl-

ized discounting patterns discussed above. Yet few if any of these models can aspire

to capturing all of the stylized patterns jointly. Psychological explanations of pro-

nounced discounting include the ‘miseries of delayed gratification’, visceral forces,

and difficulties imagining future utilities, among others (see Frederick, Loewenstein

and O’Donoghue, 2002, section 2, for a review). These explanations were, however,

devised to account for difficulties in delaying consumption, and are less suited to

explain discounting for money. Discounting for money can be organized by mod-

els that depict discounting as arising from the inherent uncertainty of the future

(Halevy, 2008; Chakraborty, Halevy and Saito, 2020; Epper and Fehr-Duda, 2023),

and which aim at capturing present bias and decreasing impatience. They are,

however, less suited for reconciling such patterns with the much steeper discount-

ing emerging from a series of shorter delays.7

The discrepancy between the two curves leading up to points B and C in figure

1 indeed creates challenges for the whole class of ‘generalized hyperbolic’ models

(Mazur, 1987; Loewenstein and Prelec, 1992; Laibson, 1997; Ebert and Prelec, 2007;
7An exception to this rule is provided by the model of Epper and Fehr-Duda (2023), which

decomposes survival probabilities for different ‘time intervals’, which are subject to separate non-
linear transformations. Their conceptualization of time is thus similar to the one used by Scholten
and Read (2006), which I will discuss shortly.
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Bleichrodt, Rohde and Wakker, 2009), which specifically explain changes in impa-

tience observed in increasing delays from the present, as showcased by the curve

leading up to point B. Within this class, the model of Gabaix and Laibson (2017)

deserves special attention inasmuch as it uses a formally similar approach to the

one I employ here to produce cognitive microfoundations for the proportional dis-

count function of Mazur (1987). I will present a detailed discussion of the relation

between the two models after presenting my model.

Read (2001) first documented the discrepancy between the patterns leading

up to points B and C in figure 1 under the name of subadditivity. Subadditiv-

ity—whereby revealed discounting for a given time delay is more pronounced when

measured over two or more sub-delays than when measured for the entire delay at

once—can account both for the steep discounting leading up to point C (which is

due to the many short delays), and for the much flatter function leading up to point

B (which is attributed to delays increasing in length). Kable and Glimcher (2010)

further showed that delays of different length produce the iconic hyperbolically de-

creasing patterns indepedently of the up-front delay, thus showing that delay length

rather than distance from the present is the relevant dimension. Scholten and Read

(2006) develop a 4 parameter function that has dedicated parameters for a variety

of empirical patterns, and Scholten, Read and Sanborn (2014) present a model that

trades off reward differences against delay differences. Present bias—the distinctive

phenomenon whereby people become more patient when the starting point of a fixed

time delay is moved from the present to the future—can however not be organized

by these models separately from generalized hyperbolic patterns.8

A line of investigation originating in addiction research and marketing has em-

phasized the subjective perception of time, as I do here. In two theoretical notes,

Takahashi (2005) hypothesizes that a logarithmic perception of time could underly

apparently hyperbolic discounting, and Takahashi (2006) shows that a concave

power transformation of time can account for subadditivity. Hyperbolicity and sub-
8The models proposed by Scholten and Read (2006) and Scholten et al. (2014) also present a

mechanism that allows them to capture the absolute magnitude effect. The outcome derivation in
Online Appendix B shows how to integreate noisy perception of rewards into the model I present
here. A fully-fledged examiniation of the magnitude effect is, however, beyond the scope of this
paper.
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additivity thereby both emerge based on subjective time perception, but by means of

formally different models. Zauberman, Kim, Malkoc and Bettman (2009) and Kim

and Zauberman (2009) document how “hyperbolic discounting” can emerge from

logarithmic perception of time, and empirically show that subjective time ratings

bear a logarithmic relationship to objective time delays from the present (see also

Bradford, Dolan and Galizzi, 2019). Cooper, Kable, Kim and Zauberman (2013)

provide evidence that neural activations during subjective time rating tasks are pre-

dictive of subsequent discounting behaviour. These studies thus provide valuable

insights supporting a central aspect of the account I propose here. The focus of

these papers, however, remains on descriptively capturing apparent hyperbolicity

in discounting measured from delays of increasing length from the present, and is

thus very different from the generative account of delay-discounting I present here.

2 Model

2.1 The choice rule and its mental representation

I model standard tradeoffs between a larger reward x, paid at a later time τℓ,

and a smaller reward y, paid at a sooner time τs. While I use such simple tradeoffs

throughout, the model straightforwardly generalizes to more complex tradeoffs—see

Online Appendix C. I start from a choice rule devoid of subjective parameters9,

under which the larger-later reward is chosen whenever

e−τℓx > e−τsy. (1)

The choice rule above is optimal inasmuch as discounting is stationary, resulting in

consistent choice patterns over time. The substantial discounting of 100% per time

unit reflects the fundamental intuition underlying the model that patience—and

perhaps the very meaning of time—needs to be learned from experience. This take

is consistent with extremely pronounced discounting observed in children (Mischel
9Note that this choice rule is used without loss of generality. Augmenting the choice rule by a

normatively low discount rate or by a concave utility function does not affect any of the conclusions
derived below. I thus focus on a minimalistic setup deprived of any further motives.
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and Ebbesen, 1970; Mischel, Shoda and Rodriguez, 1989; Bettinger and Slonim,

2007), and with the emphasis put on education in economic models endogenizing

discounting (Doepke and Zilibotti, 2014; 2017).

I now rearrange the terms in (1) to emphasize the comparative nature of the

tradeoffs involved. I further take the natural logarithm of both sides, which will

be convenient for the modelling of the neural processes, but does not affect the

conclusions in any way (see Online Appendix A). We thus obtain:

ln

(
p

q

)
> ln

(y
x

)
, (2)

where p ≜ e−τℓ and q ≜ e−τs . This formulation emphasizes the parallels with deci-

sions under risk by conceiving of the exponentials as probabilities. The left-hand

side then takes the form of log-odds, which have been described as ubiquitous in

decision-making (Zhang and Maloney, 2012). Several papers have argued that log-

odds may underly mental representations of stimuli in general (Gold and Shadlen,

2001; 2002; Glanzer et al., 2019). Noisy perception of log-odds can produce proba-

bility distortions under risk as documented in prospect theory (Zhang et al., 2020;

Khaw et al., 2023). An identical choice rule and noisy perception mechanism as the

one I use here has been shown to generate probability distortions (Vieider, 2023),

account for the Ellsberg paradox (L’Haridon et al., 2023), and explain a gap in

decisions between experienced versus described options (Oprea and Vieider, 2023).

This shows the unifying power of the modelling approach I apply here.

The central idea underlying the model is that choice quantities are not perceived

objectively, but are encoded by a signal suitable for neural representation and cal-

culations. An important substantive implication of (2) is that any such signal will

encode time delays occurring between two payment options (see Scholten and Read,

2006, and Scholten et al., 2014, for a similar modelling assumption), since it will

apply to ln
(
p
q

)
= ln

(
e−τℓ

e−τs

)
= −(τℓ−τs). This captures the idea that errors in time

perception arise from quick comparative tradeoffs between choice options, for which

the relative delays to the two payments need to be weighed against the relative re-

wards. I thus postulate that the choice rule implemeted by the mind will be based

9



on the perception of the delay t ≜ τℓ − τs. I further assume that the choice rule

is mentally implemented on (2) multiplied by −1, and logged once again. The log-

arithm is again taken purely for computational convenience (see Online Appendix

A, for an alternative derivation). This results in the following mental choice rule

conditional on the signal r:

E [ ln(t) | r] < ln
(
−ln

(y
x

))
, (3)

where I treat rewards as being perceived objectively and without distortion for sim-

plicity. Including noisy inferences on outcome ratios does not affect the conclusions

drawn from the model (see Online Appendix B).

The mental signal and the likelihood

Given limits on neuronal resources, the mental signal r will necessarily be affected

by noise.10 Noise in mental representations is indeed a hallmark of brain functioning

(Dehaene and Changeux, 1993; Dehaene, 2003; Knill and Pouget, 2004; Vilares and

Kording, 2011; Ma et al., 2023). I thus model the mental signal as a single draw

from the following likelihood function:

r ∼ N ( ln(t) , ν2 ), (4)

where r is a shorthand for r | t, emphasizing that the signal is conditional on a

specific time delay t, and where the parameter ν quantifies average coding noise,

which I assume to be locally independent of t.11 It is important to note that coding
10Oprea and Vieider (2023) show how such noise may result if the underlying log-odds are

encoded by a Beta distribution, the parameters of which could sum up the firing rates of neurons
and anti-neurons such as discussed by Gold and Shadlen (2001). This follows from the observation
that absolute precision can only be obtained from a Beta distribution in the limit as its parameters
converge to infinity, where it converges to a Dirac-delta distribution having all its probability
mass attributed to a single point. Any finite number of neurons dedicated to the coding will
thus necessarily produce noisy representations, with noise decreasing in the allocation of neural
resources at a decreasing rate.

11Local independence as defined here implies that the coding noise does not change with the
time delays used. This assumption is only expected to hold locally, in the sense that one should not
expect it to hold when transitioning between different orders of magnitude, or indeed for different
numerical representations of identical time delays.
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noise will make observed behaviour stochastic, given that the signal r from two

subsequent draws may be different even conditional on an identical time delay t

being presented to a decision-maker. The accuracy with which time delays are

perceived will be proportional to λ ≜ ν−2—the precision of the likelihood function.

Physiological and topographic evidence of neural activation directly suggests the

use of a normal distribution (Nieder and Miller, 2003; Dehaene, 2003; Harvey, Klein,

Petridou and Dumoulin, 2013). The normality assumption is further supported by

the log-odds representation, since log-odds are usually normally distributed (a fact

that is often exploited in statistics; see e.g. Gelman, Carlin, Stern, Dunson, Vehtari

and Rubin, 2014, section 5.3). Expressing the signal r on the logarithmic scale

serves to avoid an unbounded increase in the cognitive resources needed to represent

larger numbers (Dehaene and Changeux, 1993; Dayan and Abbott, 2001; Dehaene,

2003; Izard and Dehaene, 2008). Such a resource-saving implementation is crucial

in terms of neural realism, since the mental resources available for any given task

at any one time are limited (Shenhav, Musslick, Lieder, Kool, Griffiths, Cohen and

Botvinick, 2017; Heng, Woodford and Polania, 2020; Lieder and Griffiths, 2020;

Bhui, Lai and Gershman, 2021).

Logarithmic representation of choice stimuli in the brain has received support

from behavioural studies (Glanzer et al., 2019), has been proposed on grounds of

computational efficiency (Gold and Shadlen, 2001; 2002) and optimality for adap-

tation (Howard and Shankar, 2018), and has received direct support from single-

neuron measurements of the activation functions of number neurons (Nieder and

Miller, 2003; Dehaene, 2003; Nieder, 2016). Zauberman et al. (2009) and Kim and

Zauberman (2009) have documented a logarithmic relationship between objective

time delays from the present and subjective ratings of those delays. Cooper et al.

(2013) have shown that the neural activation signatures measured during a task

in which subjects are asked to rate time delays, without any outcomes involved,

predicted later choices between delayed rewards.

Logarithmic representation of time delays incurs into issues when delays be-

come very small. Since limt→0 ln(t) = −∞, the resources needed to represent small

delays would increase unboundedly, thus contradicting the very resource-saving ra-
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tionale underlying logarithmic coding. Howard and Shankar (2018) argue that this

resource-saving rationale dictates that an arbitrary number be added to the ob-

jective quantity (as routinely done in the modelling of sensorimotor tasks; see e.g.

Petzschner and Glasauer, 2011). I will thus substitute s ≜ ψ + τs if τs > 0, else

s = 0, and ℓ ≜ ψ + τℓ to model the mental representations of the objective time

delays in order to prevent the numerical representation from becoming boundless as

t→ 0. While this transformation is inconsequential for τs > 0 since ℓ− s = τℓ− τs,

it will have substantive implications for τs ≡ 0. This can be thought of as an

arbitrary fix of a numerical overflow problem that is itself subject to adjustment

whenever the importance of the situation warrants it. In this sense, ψ may arise

from inattention when decisions are taken quickly and choice quantities are gauged

approximately. Its magnitude thus ought to be subject to attentional manipulation,

e.g. by increasing attention through visual salience (see Chew, Wang and Zhong,

2023, for a model of attention).

2.2 Bayesian inference on time delays

Once one accepts the presence of noise, the key question becomes: how can one—given

the noise in the signals—optimize the quality of the inferences drawn from those

signals? It turns out that this can be achieved by combining the noisy signal with

prior information enshrining the statistical properties of the environment. To this

end, the mind builds generative models of the world, enshrined in probabilistic prior

distributions learned over time, which enable the mind to draw causal inferences

about the outside quantities triggering the signals.

In an experiment, time delays ttt = {t1, ..., tn} will be presented exogenously

by an experimenter. Delays are not directly observable for the decision-maker,

and are mentally represented by a vector of noisy signals, rrr = {r1, ..., rn}, which

are the data used by the mind. The mind uses rrr to make inferences about the

true delays generating the signals, θθθ = {θ1, ..., θn}, where θi ≜ E[ln(ti)|ri] is the

posterior expectation of the time delay ti generating signal ri. At the same time

the mind learns the parameters of the prior p(µ, ξ), with mean µ and precision ξ ≜

σ−2. The mind thus solves a joint inference problem, whereby the joint probability
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distribution p(θθθ, µ, ξ |rrr) is inferred from the noisy signals in rrr. To make the problem

more tractable, one can factorize the joint probability distribution:

p(θθθ, µ, ξ |rrr) = p(µ, ξ |rrr)× p(θθθ |rrr, µ, ξ), (5)

where p(µ, ξ |θθθ) is the learned prior distribution parameterized my mean and pre-

cision, and p(θθθ |rrr, µ, ξ) is the posterior distribution conditional on the parameters

of the prior and on the data. I will now derive these elements step by step.

Inference as optimal signal-decoding

In principle, a direct comparison of the delay signal in (4) with (a signal for) the

reward ratio would be sufficient to reach a decision (see Thurstone, 1927). However,

the average quality of decisions can be improved by combining the noisy signal with

prior information enshrining the statistics of the environment. The following prior,

for now assumed to be given, captures the statistics of the environment:

ln(t) ∼ N (µ , ξ−1 ). (6)

The log-normal form of the prior conforms to the observation that most delays one

faces are short while some are very long, and naturally reflects the non-negative

nature of time delays. Limpert, Stahel and Abbt (2001) examine a large variety of

naturally occurring data, and conclude that there is no single case in which a normal

distribution would fit those data better than a log-normal. The conjugate form to

the normal likelihood further has important analytical advantages, and allows to

quickly access the posterior. Combining the likelihood in (4) with the prior in (6)

by Bayesian updating, we obtain the following posterior:

p[ ln(t) | r ] = N
(

λ

λ+ ξ
r +

ξ

λ+ ξ
µ ,

1

λ+ ξ

)
, (7)

where 1
λ+ξ

= ν2σ2

ν2+σ2 is the variance of the posterior. The posterior mean obtains

from a simple linear combination of signal and prior mean, whereby the signal’s

contribution to the posterior mean is determined by the Bayesian evidence weight

13



β ≜ λ
λ+ξ

= σ2

σ2+ν2
. I will thus refer to β as time-discriminability, or where no

ambiguity arises, simply as discriminability.

To make the expression in (7) accessible to the experimenter, we will need to

replace the mental signal r with an observable quantity. This can be done by means

of the response distribution, which—given stochasticity in r | t—will capture the

distribution of the perceived stimulus, given the true stimulus. Let θ ≜ E[ ln(t) | r ]

be the expected delay inferred from the noisy signal. We then obtain:

p ( θ | t ) = N
(
β ln(t) + (1− β)µ ,

λ

(λ+ ξ)2

)
, (8)

where λ
(λ+ξ)2

= ν2σ4

(ν2+σ2)2
is the variance of the response distribution (proofs in Online

Appendix D). The latter captures the average perceptual noise of a time delay given

the true delay being presented to the decision-maker.12

The substantive implication of the equation above is that—in the presence of

coding noise—unexpected delays falling far from the mean of the prior will be shrunk

towards the prior mean more heavily than expected delays. Following (8), we can

write the expectation of the response distribution as follows:

E[ θ | t ] = µ+ β [ ln(t)− µ ]

= ln(t) + (1− β) [µ− ln(t) ] .
(9)

The first line of the equation conveys the point that we can think of the prior

mean as predicting the following time delay, so that deviations from that prediction

give rise to prediction errors. This intuition will be particularly helpful below, when

detailing how the prior is learned. The second line emphasizes how regression to the

mean will produce systematic deviations from the exponential discounting entailed

by the choice rule. To see this, define the bias as the difference between the average

inference and the true time delay, E[ θ | t ]− ln(t) = (1−β)[µ− ln(t) ]. The average

inferred time delay will thus be made up of the true time delay plus bias. The
12This expression encapsulates the fact that the experimenter can only observe the average

inference of the decision-maker. Stochasticity in the unobserved mental signal r conditonal on one
and the same delay being presented repeatedly then takes the form of variability in the response
as captured by the variance of the response distribution.
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strength of the bias will be a function of coding noise, converging to an unbiased

estimate only as coding noise tends to 0, given that limν→0(β) = 1. It will further be

a function of the distance to the prior mean, capturing how unexpected an observed

delay is from the perspective of the learned prior.

Notwithstanding this systematic bias, basing the decision on the posterior mean

instead of the maximum likelihood as captured by r is optimal in the sense of

minimizing the mean squared error across all choices. To see this, we can use the

bias-variance decomposition of the mean squared error:

E
[(

θ̂ − ln(t)
)2 ]

=

(
ξ

ξ + λ
[µ− ln(t)]

)2

+
λ

(λ+ ξ)2
, (10)

where θ̂ ≜ E[ θ | t ] is the expectation of the response distribution in (8), the first

part on the right-hand side is the squared average bias, (1 − β)2[µ − ln(t) ]2, and

the second part is the variance of the response distribution from (8). The variance

of the response distribution entering the definition of the mean squared error is

smaller than the variance of the signal r.13 Furthermore, most deviations µ− ln(t)

will be small due to the nature of the normal distribution. This means that the sum

of the squared bias and the variance of the response distribution will stay below the

variance of the maximum likelihood estimator in (4) when aggregating across many

stimuli (see Ma et al., 2023, section 4.5, for an illustration and detailed discussion).

It is in this sense that the biased Bayesian estimator is optimal.14

Learning the statistics of the environment

I have so far treated the prior as fixed and known. In reality, however, the pa-

rameters of the prior, µ and ξ, are unknown and will need to be learned from the

data, conditional on a hyperprior.15 The expression in (6) above might suggest

13This obtains simply from λ
(λ+ξ)2 < λ−1, which will be the case for any ξ > 0, i.e. for any

proper prior variance that is smaller than infinity, i.e. for any σ2 <∞.
14This result holds in particular because the quantity of data on which the inference is based

will necessarily be small, given that choice quantities have to be assessed quickly. For a general
discussion of the optimality of Bayesian estimators in such contexts form a machine learning
perspective, see Bishop (2006), chapter 3.

15The hyperprior constitutes the hierarchical level above the prior. Hierarchical structures with
multiple hierarchical levels are hypothesized to constitute the fundamental building blocks of neu-
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that learning of the prior should be based on the true time delays. This quantity,

however, is not directly accessible to the mind. The mind thus necessarily needs to

learn based on the inferences it draws about the time delays triggering the signals.

This will indeed be optimal for the same reasons discussed above—given noise in

the signals, the mind cannot do better than relying on its posterior inferences about

the true choice stimuli. This gives rise to a recursive learning equation, whereby

new inferences are disciplined by accumulated past inferences.16

Conditional on the data, rrr, the posterior estimates of µ and ξ will be corre-

lated. To simplify the problem, we can factorize the joint prior into the product of

a marginal prior of the precision and the prior of the mean, conditional on the pre-

cision, p(µ, ξ |rrr) = p(µ |rrr, ξ)×p(ξ |rrr). The conjugate prior to the Gaussian used for

the inference will take the form of a Normal-Gamma distribution, NG(µ0, κ0, ζ0, ρ0),

which can be written as follows:

p(µ, ξ |rrr, µ0, κ0, ζ0, ρ0) = N (µ |rrr, µ0, κ0ξ )× G( ξ |rrr, ζ0, ρ0 ), (11)

where G indicates the Gamma distribution, and where the precision of the nor-

mal prior of µ will depend on κ0ξ. The parameter κ0 thereby serves to create a

dependency between the conditional prior for the mean and the marginal prior of

the precision, with κ0 capturing the weight attributed to the prior relative to the

data. The parameters ζ0 and ρ0 govern the shape and rate of the precision prior,

respectively, with E[ξ0] = ζ0/ρ0 and V[ξ0] = ζ0/ρ20.

I will start from the updating equations of the prior mean, based on the inferred

ral architectures (Friston, 2005), and can present advantages in the highly structured environments
we typically encounter in the world. I will return to the interpretation of such hyperpriors in the
discussion.

16Since the mind cannot directly access ln(ti), the only alternative would be to base learning
directly on the noisy signals ri. This incurs into the same issues as discussed above for the
inference stage—while the signal is unbiased, it is also highly volatile, so that prior learning based
on rrr would be unstable and potentially dependent on chance realizations in early draws.
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time delay in a given round i as derived above (proofs in Online Appendix D):

p(µi |rrr, µ0, κ0ξ ) = N
(
µ̂i−1 +

1

κi−1 + 1
(θi − µ̂i−1) ,

[
(κi−1 + 1) ξ̂i−1

]−1
)

= N
(
µ̂i−1 +

βi−1

κi−1 + 1
[ri − µ̂i−1] ,

[
(κi−1 + 1) ξ̂i−1

]−1
)
,

(12)

where (κi−1 + 1) ξ̂i−1 is the precision of the posterior mean, and where I use the

‘hat’ on µ and ξ to indicate the expectation of the parameters defining the prior,

given that these parameters are now themselves uncertain quantities. The expected

posterior mean, µ̂i, will thus be a convex combination of the prior mean, µ̂i−1, and

the prediction error, ( θi − µ̂i−1 ), weighed by the strength of the data relative to

the weight of the prior, 1
1+κi−1

. The parameter κi−1 captures the confidence in the

prior relative to the data, and is updated as κi = κi−1 + 1.

The last line of the equation above uses the definition of θ to show how learning

is based on the prediction error of the signal, ri, weighed by discriminability βi−1,

which will typically be smaller than 1. This implies that we should expect the

updating of the prior mean to be ‘conservative’—the signal will only be taken into

account in proportion to its informational content. This will result in incomplete

learning, given that for repeated stimuli we can substitute ln(ti) for ri in the last

line of the equation to obtain a learning equation observable to the experimenter

(the variance will however be different in this case—see Online Appendix D for

details).17 Updating will further decline over time in a given environment due to

the presence of κi−1 + 1 in the denominator of the learning rate.

To complete the description of the learning process, we can take a look at the

updating equations for the precision of the prior:

p(ξi |rrr, ζ0, ρ0) = G
(
ζi−1 +

1

2
, ρi−1 +

1

2

κi−1

κi−1 + 1
(θi − µ̂i−1)

2

)
= G

(
ζi−1 +

1

2
, ρi−1 +

1

2

κi−1 β
2
i−1

κi−1 + 1
(ri − µ̂i−1)

2

)
.

(13)

17The observation that learning will be incomplete raises the question of whether we can still
consider the decision process optimal. That question, however, does not have a simple answer,
and will thus be considered in the discussion.
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The posterior sum of squares, ρi, thus combines the prior sum of squares, ρi−1 with

a squared prediction error, arising from the discrepancy between the inferred delay

and the prior mean, (θi − µ̂i−1)
2. The last line of the equation shows how the pre-

cision will be updated based on the squared difference between the prior mean and

the signal. This, in turn, means that the variance will systematically depend on the

coding noise as well as on the variance of the true stimuli.18 Between subjects, we

should thus expect a positive correlation between coding noise ν and the prior stan-

dard deviation σ, which constitutes a testable implication of (13).19 The learning

of the precision once again depends on discriminability βi−1, but other than seen

for the mean, does not slow down over time. Changes in the environment resulting

in larger prediction errors will thus yield temporary increases in the learning rate.

2.3 The stochastic choice rule

We can now use the response distribution in (8) jointly with the dynamic equations

from the previous section to arrive at the following stochastic choice rule:

Pr[(xi, τℓ,i) ≻ (yi, τs,i)] = Φ

 ln
(
−ln

(
yi
xi

))
− βi−1 ln (αi−1ti)

βi−1 ν

 , (14)

where Pr[(xi, τℓ,i) ≻ (yi, τs,i)] is the probability of the larger-later reward being

chosen in round i, Φ represents the standard normal cumulative distribution func-

tion, and αi−1 ≜ exp
(

(1−βi−1)
βi−1

µ̂i−1

)
captures impatience. Dividing the weight of

the prior, 1 − βi−1, by the weight attached to the logged time delay, βi−1, thereby
18This is most easily seen when reformulating the equation above from the point of view of the

experimenter for n time delays, in which case two separate squared deviations for the prediction
error of the stimulus and for coding noise will be added to the prior sum of squares—see Online
Appendix D for the derivation of such an equation.

19The equations I present here predict a causal relation going from coding noise to the variance
of the prior. In general, however, we should also expect the coding noise to efficiently adapt to
the variation of stimuli in the environment (Laughlin, 1981; Polania, Woodford and Ruff, 2019;
Heng et al., 2020; Prat-Carrabin and Woodford, 2022; Heng, Woodford and Polania, 2023), thus
resulting in a feedback cycle that further strengthens the correlation. Other than existing models
of efficient coding, which typically assume the statistics of the environment to be objectively know
to the decision-maker, the learning setup I present here suggests that efficient adaptation will in
turn depend on the learned quantities of the prior. Note, however, that what counts for learning
is coding noise relative to the variance of the prior, ν/σ, which we may think of as a more or less
stable individual characteristic.
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serves to put the parameter on the scale of subjective time. This allows for easier

interpretation of the behavioural effects of the parameter.

According to (14), the probability of choosing the larger-later option will de-

crease in the ratio of the sooner to the later reward yi/xi and in the time delay ti.

For values of ti < (αi−1)
−1, time discriminability βi−1 < 1 will increase perceived

time, making it appear longer than it truly is. For values ti > (αi−1)
−1, the oppo-

site will be the case, with perceived time delays being compressed relative to their

true duration. Conditional on a given value of µi−1, αi−1 furthermore depends on

discriminability βi−1, with limβ→1(α) = 1. As noise vanishes we should thus witness

convergence towards the exponential coding rule in (2).

In contrast to traditional discounting models, which combine a deterministic

preference model with an independently chosen stochastic choice model (He, Gol-

man and Bhatia, 2019), the probabilistic setup used here produces an inherently

stochastic model of inter-temporal choice. The standard deviation of the decision

noise, βi−1 ν =
ν σ2

i−1

ν2+σ2
i−1

, corresponds to the standard deviation of the response dis-

tribution in (8). This gives us a new sense of the optimality of the Bayesian combi-

nation of signal and prior. Whereas variation of the signal r increases unboundedly

in coding noise ν, response noise β ν is non-monotonic in ν, increasing up to ν = σ

and decreasing again thereafter. Intuitively, for ν > σ the pull towards the prior

overpowers the signal, reining in the effect of further increases in coding noise. The

interdependency between numerator and denominator further addresses issues aris-

ing from scale arbitrariness when both are defined independently as documented by

Apesteguia and Ballester (2018).20

2.4 Behavioural implications

Present bias and delay-dependent discounting

When modelling delays from the present, i.e. for τs ≡ 0 and t = ℓ, equation (14)

can be seen as providing stochastic microfoundations for the constant sensitivity

discount function of Ebert and Prelec (2007). This is most easily seen by zooming in
20I am indepted to Miguel Ballester for pointing this out.
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on the stochastic equality condition in the numerator of (14).21 Dropping subscripts

for simplicity, let δℓ ≜ y
x
. Exponentiating the numerator twice yields the following

expression at the point of stochastic indifference:

δℓ = exp
(
−(αℓ)β

)
. (15)

Ebert and Prelec (2007) showed that α creates a demarcation between the near

and the far future. Discounting for delays shorter than 1/α will increase in time

insensitivity relative to the exponential benchmark, whereas discounting for delays

longer than 1/α will decrease (see also Kim and Zauberman, 2009, for the use of

the same function to fit subjective ratings of time delays from the present). This

insight resonates with the interpretation of the model presented above, whereby α

captures regression of time perception to the mean of the prior.

The model predictions, however, deviate from those of the constant sensitivity

model in several respects. The definition of the time delay as ℓ ≜ ψ + τℓ implies

that the function will show a discontinuous drop in the vicinity of τℓ = 0. That is,

limτℓ→0D(t) = exp(−(αψ)β), where D(t) indicates the discount function. Assuming

as usual that D(0) = 1, so that immediate payments are not discounted—in the

absence of any delay being indicated, there is no time delay to be encoded—this

introduces a discontinuity between τs ≡ 0 and τs > 0 which predicts present-bias—a

preference for immediate rewards over even slightly delayed rewards. Present-bias

is thus captured by ψ, introduced to fix a numerical overflow problem. This number

may itself be subject to attentional modulation.

Once up-front delays are introduced, the noisy perception model predicts that

delays between the two options are nonlinearly distorted, whereas the constant

sensitivity model predicts transformations of the individual time delays from the

present, so that δτs,τℓ = exp(−αβ(τβℓ − τβs )). Much like other functions from the

non-exponential family, the constant sensitivity model can thus not account for sub-

additive discounting. The noisy time perception model, on the other hand, predicts

that impatience systematically depends on the time delays used to measure it. For
21I define ‘stochastic equality’ as the larger-later reward being chosen 50% of the time.
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a given delay length, however, the function is stationary, i.e. it is independent of

the value taken by the up-front delay τs except in the special case where τs = 0.22

The fact that this function obtains naturally from an intuitive optimal choice rule

may explain the pervasiveness of subadditivity (Read, 2001; Read and Roelofsma,

2003; Scholten and Read, 2006; Dohmen, Falk, Huffman and Sunde, 2017; Enke et

al., 2023).

Other than in the constant sensitivity model, time discriminability β is closely

linked to decision errors, and the model is inherently stochastic. In the limit as

ν → 0 subadditivity will disappear, and revealed impatience will be independent of

the length of the time delays used. The model parameters are furthermore subject

to endogenous adjustment dependent on the statistics of the environment—a key

feature which distinguishes the model not only from the constant sensitivity model

of Ebert and Prelec (2007), but from all existing discounting models.

Relation to Gabaix and Laibson (2017)

Gabaix and Laibson (2017) propose a model that is formally related to the setup

presented here. They assume Bayesian agents who are perfectly patient, but who

perceive future utilities with some noise, so that sτ ∼ N (u(xτ ) , ω
2
τ ), where u(xτ )

is the utility of a reward x received at time τ , and sτ is the noisy simulation of

that utility. This simulation is combined with a prior u(xτ ) ∼ N (x̂, η2). This

yields the posterior expectation E[u(xτ ) | sτ ] = x̂ + D(τ)(sτ − x̂). Assuming that

the noisiness of the signal increases linearly in the time delay τ , i.e. ω2
τ = ω2 × τ ,

they obtain D(τ) ≜ η2

η2+ω2τ
= 1

1+ω2

η2
τ
, which takes the form of the proportional

discount function proposed by Mazur (1987), D(τ) = 1
1+χτ

, with χ ≜ ω2

η2
. Note that

while future utilities are subject to noisy simulations, time delays are perceived
22While decreasing impatience is much-discussed in the economics literature, its empirical status

is unclear. Most of historical discussion of decreasing impatience has used delays of increasing
lengths from the present (e.g., Thaler, 1981; Ebert and Prelec, 2007; Zauberman et al., 2009).
Read (2001) found no evidence for strongly decreasing impatience across 3 experiments. Rohde
(2019) found evidence for present-bias, but not for further decreases in impatience with larger
up-front delays. He et al. (2019) concluded from two experiments that “decreasing impatience is
not as robust as is widely held” (p. 63). Similar conclusions were reached by a number of other
recent papers carefully controlling for delay-dependence (Attema, Bleichrodt, Rohde and Wakker,
2010; Cavagnaro, Aranovich, McClure, Pitt and Myung, 2016). See, however, Bleichrodt, Gao
and Rohde (2016) for evidence of strongly decreasing impatience for both health and money.
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objectively. The model thus predicts discounting to be proportional to the time

delay from the present, but does not predict subadditivity or present-bias. The

model of Gabaix and Laibson (2017) provides micro-foundations for psychological

accounts according to which future utilities are uncertain. The model thus presents

a view that is highly complementary to the one presented here.23

3 Experiment I: Manipulation of perceptual noise

One central prediction of the model is that many of the distinctive discounting

patterns known from the literature arise from the noisy perception of time. Manip-

ulating how delays are displayed thus ought to affect noise in time perception, and

thereby shape observed discounting behaviour. In this experiment I thus random-

ize whether subjects see time delays described by means of textual statements, or

whether they are given a visual aid representing time delays by rulers with length

proportional to the delays being presented. The visual aid manipulation I use is

meant to specifically focus attention onto the time dimension.

The visual aid is shown in figure 2. In the control or textual condition, time

delays are described in the standard, verbal format. In the visual condition, time

delays are depicted by means of time lines which are proportional in length to

the time delay between now and the moment the reward is paid out. In an ad-

ditional outcome condition the rewards in the textual condition are emphasized

by increasing the font in which outcomes are displayed and highlighting them in

bold. This serves as a placebo treatment, to ensure that any effects in the visual

condition cannot be ascribed to outcomes appearing more prominent as well. I ran

the experiment with 451 subjects on Prolific UK. Subjects were paid a fixed fee

for their time, and made hypothetical choices between time-delayed payment op-

tions. There is no evidence that using hypothetical instead of real choices impacts
23For instance, the model presented here does not predict strongly decreasing impatience, in

the sense of impatience decreasing for identical time delays as they are pushed farther into the
future (Prelec, 2004). While the experiments in this paper do not support strongly decreasing
impatience, this may change for consumption goods and when delays become very long, being
measured e.g. on a time scale of years instead of weeks. In such cases, a combination of the two
models may be desirable, which is straightforward given the models’ technical similaries.
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observed discounting behaviour (Cohen et al., 2020). Online Appendix F further

reports an incentivized classroom experiment I ran as a stability check, and which

shows identical qualitative results as the textual treatment.

(a) Textual condition (b) Outcome condition

(c) Visual condition

Figure 2: Choise situation by treatment
Panel 2(a) shows a choice situation in the textual condition. Panel 2(c) shows the equivalent choice situation in
the visual condition. Panel 2(b) shows the choice situation in the outcome condition. Subjects could indicate their
choice by clicking on their preferred option, and subsequently moving on the the following screen.

The time delays used in the experiment are depicted in figure 9. They were

chosen using simulations to allow for optimal identification of all model components.

In particular, comparison of AB to BC and of AC to CE allows for the identification

of present-bias. Comparison of AB and BC with AC, of CD and DE with CE, and

of all the 6 week delays (AB, BC , CD , DE) and 12 week delays (AC , CE) with the

full delay over 24 weeks (AE) allow for the identification of subadditivity. Strongly

decreasing impatience can be identified from the comparison of BC, CD, and DE.24

The future outcome was fixed at e50. The choice of such a round, invariant

amount was meant to ensure that outcomes are perceived objectively, rather than

being subject to noisy perceptions themselves (see online appendix B for a discus-

sion of robustness to this assumption). The earlier amounts ranged between £33

and £49 inclusive in steps of £1. Each screen presented one single choice, and
24Following Prelec (2004), I define strongly decreasing impatience as (y, τs) ∼ (x, τℓ) → (y, d+

τs) ≺ (x, d + τℓ), where d, τs, τℓ are nonnegative time delays, τs < τℓ , and x > y are monetary
outcomes.
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now 6 weeks 12 weeks 18 weeks 24 weeks

A B C D E

Figure 3: Time horizons used in experiment
Illustration of time delays used in the experiment. The maximum delay, indicated by AE, was 24 weeks. This delay
was divided into 4 different sub-periods of 6 weeks, AB, BC, CD, and DE; and into 2 different sub-delays of 12 weeks,
AC and CE. Comparison of AB to BC and of AC to CE allows for the identification of present-bias. Comparison of
BC to CD and DE, and of the latter two, allow for the identification of strongly decreasing impatience. Comparison
of long delays with their constituent parts allow for the identification of delay-dependence. Notice that, given 4
delays of 6 weeks, 2 of 12 weeks, and 1 of 24 weeks, the stimuli are well-fitted by a log-normal distribution.

the individual choice pairs were presented completely at random. The position of

the smaller-sooner versus larger-later option was also randomized. This design was

implemented to fit the discrete binary choice setup modelled. Subjects made 158

choices, which took about 15 minutes on average. All stimuli were presented at

least once. In addition, 40 randomly selected stimuli were repeated with replace-

ment. Identification of response noise, which plays a central role in the model, is

thus assured by i) repeated observations of the same stimuli; and ii) monotonicity

violations between similar stimuli.

A key prediction is that the visual aid for time will decrease coding noise. Im-

portantly, however, by focusing attention on the time dimension, the visual aid

manipulation is predicted to also decrease present-bias. This prediction arises from

the observation that the visual aid does not only simplify the appraisal and com-

parison of time delays, but that it also impacts attention paid to the time delays

themselves. If the attentional interpretation of ψ is warranted, we should thus

expect to see a decrease in present-bias. The outcome manipulation serves as a

placebo. It may either not make any difference, or it may further increase coding

noise of time and hence decrease delay-discriminability β by focusing attention on

the outcome dimension and away from time.

24



Note that the predictions above are distinctive features of the noisy coding setup

I use. Traditional preference-based accounts would not predict any difference in

behaviour based on how time delays are displayed, nor would standard psychological

explanations based on difficulties in postponing consumption.25 We also would

not expect any differences based on the inherent uncertainty of the future, which

remains identical across treatments. Error models do not make any predictions

about systematic effects either. It is of course conceivable that the magnitude of

the error could vary with the presentation format. Note, however, that models such

as those proposed by Lu and Saito (2018) and He et al. (2019) would then predict

differences in decreasing impatience—a prediction that is quite distinct from those

presented here. The same holds true for the model of Gabaix and Laibson (2017),

given that in the latter time is perceived objectively and noise affects the time-

proportionality parameter. The predictions that come closest are those based on

accounts meant to capture the fragility or subjective nature of time. For instance, a

visual manipulation has been proposed previously by Ebert and Prelec (2007), and

Zauberman et al. (2009) have used priming interventions to affect time perception.

Both these papers have, however, focused exclusively on delays from the present to

quantify “hyperbolic discounting”. These manipulations can thus not disentangle

strongly decreasing impatience from subadditivity and present-bias—a distinction

which is crucial here.26

3.1 Results

Figure 4 shows nonparametric discount functions by condition. Panel A shows the

discount functions for delays of increasing length from the present. The function in

the visual treatment is the highest of the three for the 6-week delay, and the lowest

of the three for the 24-week delay, putting it closest to exponential discounting. This

shows that the visual treatment has the effect of increasing time discriminability, as
25Of course, there could still be a difference affecting the noise attached to such models. Such

noise, however, is typically attached to the discounted utility, and modelled as “while noise”
independent from the preference parameters.

26In particular, a model estimating a hyperbolic-type function will subsume any subadditivity
in decreasing impatience. It will also not distinguish between a drop near 0 from general patterns
of declining impatience. See Enke et al. (2023) for a discussion of the problems arising from this.
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hypothesized. Panel B shows discount functions obtained by multiplying discount

factors for subsequent 6-week delays from the present, from 6 weeks, from 12 weeks,

and from 18 weeks. Once again, the function in the visual treatment is the closest to

an exponential function amongst the three, showing increased time discriminability.
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Figure 4: Nonparametric discount functions by treatment
The figure shows nonparametric discount functions by treatment, with linear interpolation between the data points.
Panel A shows the functions obtaining when using delays of increasing length from the present. Panel B shows the
function obtaining when multiplying subsequent 6-week delays, i.e. by using delays of 6 weeks from the present, 6
weeks from 6 weeks, 6 weeks from 12 weeks, and 6 weeks from 18 weeks, so that the discount factor for a 12-week
delay, δ12, is calculated as δ12 = δ0,6×δ6,12, where the subscripts indicate the sooner and later time delays attached
to the smaller and larger payoffs, respectively. Following the same procedure, we obtain δ18 = δ0,6 × δ6,12 × δ12,18
, and δ24 = δ0,6 × δ6,12 × δ12,18 × δ18,24. The figure for subsequent 12-week delays looks similar, and is not shown.

Next let us have a look at the most distinctive prediction arising from the

increased attention to the time delays hypothesized in the visual condition—the

decrease in present-bias. Figure 5 shows decumulative choice proportions of the

larger-later reward as the smaller-sooner reward increases. Panel A shows the choice

proportions in the textual condition, comparing a 6-week delay from the present to

a 6-week delay from 6 weeks. Panel D shows the choice proportions in the textual

treatment for a 12-week delay from the present compared to choice proportions for a

12-week delay from 12 weeks. In both cases, there is clear evidence for present-bias

(p < 0.001 in both cases; Wilcoxon signed-rank test).

Panels B and E show the equivalent figures for the visual condition. The choice

proportions for the delays from the present and for the delays from the upfront delay

are now virtually indistinguishable (p > 0.47 in both cases). One can furthermore

see that the difference is closed from the side of the immediate delays, i.e. we clearly

witness a reduction in present-bias, rather than an overall increase in impatience.
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Figure 5: Decumulative choice porportions for larger-later option by treatment
Decumulative choice proportions of the larger-later reward as the smaller-sooner reward increases from £33 through
£49. The later amount was kept constant at £50 throughout. Curves fit to the choice proportions are based on
second degree polynomials. Panel A compares the choice proportions for a 6-week delay from the present, to those
for a 6-week delay from 6 weeks in the textual condition. Panel B shows the equivalent comparison for the visual
condition. Panel C shows once more the same comparison for the outcome condition. Panels D to F show the
equivalent comparisons using a 12 week delay from now versus a 12 weeks delay from 12 weeks, for the textual
condition (panel D), the visual condition (panel F), and the outcome condition (panel F).

Finally, panels C and F show decumulative choice proportions of the larger-later

option in the outcome condition for delays of 6 weeks and 12 weeks, respectively.

Present-bias is again strong in both cases (p < 0.001 ). This shows how the effects of

the visual treatment cannot be explained by a confound deriving from the increased

visibility of the outcome dimension.

Figure 6 shows a comparison of the structurally estimated parameters across

treatment conditions. Panel A shows the empirical cumulative distribution function

of the individual-level coding noise means. The curves are clearly distinct. Cod-

ing noise in the visual condition is lower than in the textual condition (p = 0.005,

Wilcoxon ranksum test on individual means), as well as compared to the outcome

condition (p < 0.001). Coding noise is furthermore significantly larger in the out-

come condition compared to the textual condition (p = 0.001). Panel B shows

time-discriminability parameters β. Discriminability shows systematic differences

across the conditions. In particular, discriminability in the visual condition is sig-

nificantly larger than in both the textual condition (p = 0.016) and the outcome
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condition (p < 0.001). Discriminability in the textual condition is in turn larger

than in the outcome condition (p = 0.007). This shows the causal effect of the

visual aid on noise in delay perception.
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Figure 6: Comparison of structural model parameters
The figure shows individual level parameters, defined as the means of the posterior distributions. Panel A shows
the patterns for coding noise, ν. Panel B shows time-discriminability, β. Panel C shows the logged present-bias
parameter, log(ψ). Panel D shows a scatter plot of logged coding noise SD ln(ν) against the logged prior SD, ln(σ).
Some outliers may be cut from the graphs to improve the visualization.

Panel C shows the cumulative distributions for the natural logarithm of the

present bias parameter, ln(ψ). The parameters in both the textual condition and the

outcome condition are much larger than they are in the visual condition (p < 0.001

in both comparisons).27 The present-bias parameter is furthermore significantly

smaller in the textual than in the outcome condition (p = 0.008). The pronounced

difference we see between the visual treatment and the textual and outcome treat-
27While ψ is the main parameter driving present bias in the model, the overall incidence of

present bias will be governed by (αψ)β . All the differences discussed in the main text remain
statistically significant if I use this measure instead.
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ments gives credence to the hypothesis that present-bias is subject to attentional

modulation. Finally, panel D plots the logged standard deviation of the coding

noise, ln(ν), against the logged standard deviation of the prior, ln(σ). In all three

treatment conditions, the two parameters are strongly positively correlated between

subjects (ρ > 0.47, p < 0.001 in all 3 conditions according to a Spearman rank cor-

relation). This corresponds to the prediction of the joint inference model, thus

providing suggestive evidence in favour of the learning mechanism modelled.

4 Experiment II: Moving the prior

The visual display manipulation just discussed showed one of the central mecha-

nisms underlying the model at work. A second distinctive mechanism underlying

the model concerns the effect of the prior mean. The regression to the mean of

the prior underlying time distortion yields a distinctive prediction: one ought to be

able to systematically change patience simply by manipulating the choice context.

In particular, we would expect that choice behaviour measured on a common set

of test tasks ought to exhibit more patience when it is preceded by an adaptation

choice set containing relatively short time delays, than when it is preceded by a set

with relatively long time delays.

Note that this is a distinctive prediction emerging from the Bayesian infer-

ence model I have presented above. Neither exponential, nor hyperbolic or quasi-

hyperbolic functions contain a mechanism predicting that choices will be influenced

by context effects. Standard interpretations of these models hold that the observed

patterns are due to preferences, which are implicitly treated as exogenous. The pre-

diction is also at odds with accounts ascribing non-standard discounting patterns to

the inherent uncertainty of the future, since the latter cannot possibly be impacted

by the nature of the choice set. Noisy simulations of future rewards will remain

the same, since I keep the rewards constant, and time is perceived objectively in

that model. Even subadditive models and accounts that have discussed the sub-

jective nature of time do not contain any formal mechanism predicting this sort of

effect. The prediction whereby patience should systematically change according to
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the initial stimuli presented in an experiment is thus unique to the joint Bayesian

inference model I present here.

The experiment consists of binary choices between smaller-sooner and larger-

later rewards shown using a standard textual display. There are two parts: part

1 contains the adaptation stimuli, and part 2 the test stimuli. The test stimuli in

part 2 are like the delays AB, AC, CE, and AE used in experiment I, except that all

delays are doubled (i.e., AC now corresponds to 24 weeks instead of 12). The reason

for this is that doubling the test delays allows me to both lengthen and shorten the

delays in the adaptation phase, while still using round delays in weeks. The later

reward was kept fixed at £50, while the sooner reward varied between £25 and £49

in steps of £1. This yields 100 test choices, to which I add 20 randomly repeated

choices. Choices were presented one-by-one in random order.

Part 1 contained the adaptation phase, which constitutes the main treatment

manipulation. Subjects in the long condition were presented with binary choices

just like in the test phase, but ranging over longer delays of up to 92 weeks. Subjects

in the short condition were presented with binary choices involving delays of at most

12 weeks. The conditions contained the following 4 delays:

Ds = { (0, 6), (0, 8), (6, 12), (6, 18) } , Dl = { (0, 84), (0, 92), (6, 84), (12, 82) },

where Ds stands for short delays, and Dl for long delays, with all delays indicated in

weeks. The delays were constructed in such a way as to keep the variance of delays

constant across treatment conditions over the whole experiment. As in the test

phase, the later monetary reward was kept fixed at £50, while the sooner rewards

varied between £25 and £49 in steps of £1. This yields 100 adaptation trials, which

were presented to subjects in random order. The change from adaptation phase to

test phase was seamless, i.e. subjects were given no sign or warning that there were

different parts to the experiment.

The main prediction concerns the prior mean µ, and hence the impatience pa-

rameter α. In particular, both should be larger in the long condition than in the

short condition, thus yielding more impatient behaviour in the long condition. This

30



is a distinctive prediction emerging from the model, given that standard models are

static and do not allow for the adaptation of ‘preference parameters’ to the statistics

of the environment. While additional model parameter may also change following

the dynamic learning equations presented above, I will here focus on changes in

impatience, following the pre-registered analysis plan.

4.1 Results

Panel A in figure 7 shows nonparametric discount functions for the two conditions

obtained from delays of increasing length from the present, and panel B shows

nonparametric discount functions obtained from subsequent 24 week delays. The

discount functions in the short condition, where subjects were presented with rela-

tively short delays in the adaptation phase, stays clearly above the function observed

in the long condition, where subjects were presented with relatively long time delays

during the adaptation phase. This is the case in both comparisons, and the effects

are economically sizeable. This result thus supports a central prediction of the joint

inference model, whereby the initial time delays experienced during the experiment

should systematically influence subsequent behaviour.

Panel C further shows decumulative choice proportions for the larger-later re-

ward obtaining 24 weeks from the present as the sooner reward increases from £25

through £49, and panel D shows equivalent decumulative choice proportions for the

24 week interval starting 24 weeks from the present (relative choice proportions for

other delays look very similar). The choice proportions for the larger-later option

are clearly larger in the short condition (p < 0.001 in both cases). The difference

is further sizeable, amounting to about 10 percentage points for the lowest sooner

rewards. The nonparametric evidence thus leaves no doubt that being exposed to

shorter delays in an initial adaptation phase yields higher levels of patience than

being initially exposed to long delays, whereby patience is measured on identical

choice alternatives. This constitutes evidence for a key mechanisms underlying the

joint inference model—that “revealed preferences” ought to systematically depend

on the statistics of the environment—which sets its prediction apart from the pre-

dictions of all existing accounts of time discounting.
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Figure 7: Effects of different adaptation choices, nonparametric
The figure shows the effect of different time delays shown during an adaptation phase preceding the test phase
on which the graphs are based. Panel A shows nonparametric discount functions using delays of different length
from the present. Panel B shows nonparametric discount functions calculated based on subsequent 24 week delays,
so that δ48 = δ0,24 × δ24,48. Panel C compares decumulative choice proportions for the larger-later option as a
function of the earlier payment for a delay of 24 weeks from the present (line fit by a second-order polynomial).
Panel D shows decumulative choice proportions for a 24 week delay from an upfront delay of 24 weeks.

Figure 8 shows structural estimates of model parameters. The parameters have

been estimated purely on the stimuli of the test phase, which are identical across

treatments. Panel A displays the empirical cumulative distribution function of the

logged impatience parameter, ln(α). The distribution of impatience parameters ob-

tained from the condition with short delays during the adaptation phase lies below

the mean estimated from the condition with long delays in the adaptation phase

(p = 0.001, Wilcoxon ranksum test).28 Panel B shows a scatter plot of discriminabil-

ity β against ln(α). The graph illustrates how subjects with large discriminability
28A similar difference emerges when looking at the mean of the prior, µ. Here, we also find

the parameter to be smaller for subjects who have been exposed to short delays rather than long
delays during the adaptation phase, indicating less impatience (p = 0.002).
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Figure 8: Structural parameters after prior adaptation
The figure shows the effect of different time delays shown during an adaptation phase preceding the test phase on
structural model parameters. Panel A shows the empirical cumulative distribution function of the logged impatience
parameter, ln(α). Panel B shows a scatter plot between discriminability β and the logged impatience parameter,
ln(α), with colours indicating quartiles of the prior mean µ, and shapes showing the treatment condition. Some
observations may be cut for an improved visual display.

β also have logged impatience parameters converging towards 0, which here corre-

sponds to a correct assessment of the average delay on the subjective time scale.29

For values of β < 0.5, where coding noise exceeds the prior standard deviation,

impatience parameters diverge in both directions, indicating higher behavioural

dispersion when the prior is learned imperfectly. These results further illustrate the

causal effect of the statistical environment on behaviour.

5 Discussion and Conclusion

I have presented a generative account of delay-discounting. Other than descriptive

models, which aim to mathematically capture observed behaviour as accurately

as possible, such a model aims to represent the underlying processes from which

observed choice patterns may arise. Modelling this decision process in a way that is

plausible from a neuro-biological point of view, and using a choice rule and modelling

setup identical to those used to model decision processes under risk, uncertainty,
29The estimations use a time scale that has been normalized to yearly delays by division of the

delayes in weeks with 52. The impatience parameter α is measured on that same scale, so that
convergence towards 0 of ln(α) indicates convergence towards 1 of α, thus indicating the perception
of 1 time unit on the subjective scale. Convergence of β towards 1, however, also implies that the
subjective time scale converges towards the objective scale, thus yieling convergence towards the
optimal choice rule.
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and ambiguity, I have shown the model to reconcile several findings that remain

challenging for any one descriptive model to organize. Two experimental tests

showed support for the central working mechanisms of the model—coding noise

and the prior mean. The experimental results present a unique empirical fingerprint

that cannot be organized by any existing model of discounting.

The model predictions and experimental findings described above are consistent

with a number of stylized facts in the delay-discounting literature. For instance,

Ebert and Prelec (2007) and Zauberman et al. (2009) have documented how the time

dimension is ‘fragile’, subjective, and subject to manipulations. The model I have

presented shares a common intuition with these accounts of discounting, but also

differs from them in important ways. One, time perception in the Bayesian inference

model applies to delays between different payment options, rather than to the time

attached to single rewards, which allows it to reconcile apparent hyperbolicitly in

delays of different length from the present with subadditivity (see also Scholten and

Read, 2006, and Scholten et al., 2014). Two, it affords a central role to the prior,

thus predicting context effects of the sort documented in experiment II, which are

not predicted by the other models. The central role played by described time delays

in the model also helps to shed light on other findings in the literature. For instance,

Read, Frederick, Orsel and Rahman (2005) have documented a ‘date/delay effect’,

whereby discounting weakens substantially when delayed payoffs are associated with

calendar dates rather than with time delays (see also LeBoeuf, 2006). This is highly

consistent with the model I presented, since in the absence of any delays to be noisily

encoded, we would expect the effect of noisy delay perception to subside.

The noisy coding of time model I have presented makes stochastic predictions

on choice behaviour in tradeoffs between smaller-sooner and larger-later amounts

based on the noisy perception of time delays. A related literature has studied the

effects of randomness in choices and/or preferences on inter-temporal discounting

(Lu and Saito, 2018; He et al., 2019). These papers have highlighted that particular

patterns of randomness in responses or preferences may result in hyperbolic as-if

discounting. The predictions emerging from these two classes of models are quite

distinct. While the noisy coding model predicts delay-dependence and present-bias

34



based on different mechanisms, these error models predict that decreasing impa-

tience may arise from randomness in preferences. The predictions of these models

are thus similar to those of the hyperbolic discounting literature, even though the

patterns arise from noise rather than preferences.

Some of the specific mechanisms underlying the model I presented may well

prove contentious. It is, however, important to note that many of the central

predictions of the model do not hinge on a literal interpretation of the modelling

assumptions. For instance, we would not expect the mind to encode the parameters

of the normal distributions and to calculate the precise posteriors. The exact neu-

ral underpinnings of Bayesian representations remain disputed at this point (Ma

and Jazayeri, 2014). While the statistics of the environment could be encoded by

populations of neurons (Ma, Beck, Latham and Pouget, 2006), they may alterna-

tively be represented by a limited number of samples that are updated with new

samples over time (Sanborn and Chater, 2016; Prat-Carrabin, Wilson, Cohen and

Azeredo da Silveira, 2021). Although the precision with which a Bayesian mecha-

nism is implemented will differ between these coding paradigms, the key point is

that (approximate) calculations such as the ones used here are well within the reach

of the human mind. This makes the model plausible from a neuro-biological point

of view.

I have described the neural processes underlying inter-temporal decisions as

optimal, subject to resource constraints. Such a description is in line with the

convergence towards a “resource-rational” view of decision-making in neuroscience

(Lieder and Griffiths, 2020; Bhui et al., 2021), although different conceptions of

resource-rationality coexist (Ma and Woodford, 2020). It is thus important to

note that the optimality I describe is strictly conditional on the noisy logarithmic

comparison of choice stimuli. Noise is an inherent feature of neural activation, and

logarithmic coding has been argued for based on efficiency grounds, using direct

physiological evidence, and for computational reasons. I thus take these elements

as a starting point for the model presented in this paper. Conditional on noisy

logarithmic coding, however, the combination of noisy signals with a prior capturing

the statistical properties of the environment can in general be considered optimal.
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The feature of the dynamic updating equations whereby stimuli are only learned

imperfectly may introduce additional bias, thereby questioning the optimality of a

decision process that replies on imperfectly learned environmental statistics. Once

again, however, a central point of the model is that—in the presence of coding

noise—the mind may not be able to do better than using these noisy signals to

the best effect possible. Learning based on a discounted signal that is taken into

account in proportion to its informational content may then well be the best the

mind can do. This is especially true if—as hypothesized here—the learning is based

on a hyperprior which summarizes the wider experiences of the individual across

a variety of contexts. Given that the world we live in is highly structured (after

all, a year has the same duration regardless of where on lives), we should expect

most specific decision situations (such as e.g. an experiment) to present similarities

to the wider context (e.g., typical delays one faces in the real world). Relying on

higher-level hierarchies as a starting point for situation-specific learning may then

again be considered optimal, although a detailed investigation of this issue is beyond

the scope of this paper.

Multi-level hierarchical structures have been hypothesized to constitute the fun-

damental building blocks of neural architectures (Friston, 2005). One can think

of hyperpriors as having evolved for optimal adaptation, whereby general statistics

of the environment will also influence those statistics in most specific situations

occurring within that same environment. In this sense, the hierarchical structure

of the priors can be seen as reflecting statistical regularities in the world, and thus

to be optimal for adaptation. Adaptation to specific environments will, in turn,

be optimal whenever perfect perception of all choice stimuli is not possible due to

processing constraints—a central feature of humans, given the sheer amount of sen-

sory stimuli we are exposed to during every waking minute, and the computational

demands that accurate processing of such stimuli would impose (Bossaerts, Yadav

and Murawski, 2019).

Hyperpriors can then be interpreted as the place where something akin to the

traditional conception of “preferences” may originate within the model. We would

expect the parameters of the hyperprior to be affected by lifetime experiences across
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a wide variety of contexts an individual has been exposed to. One may thereby

expect particularly strong effects arising from salient experiences—high stakes out-

comes, experiences during formative years, persistent regularities in the environ-

ment—as well as from educational inputs as modelled in economics (Doepke and

Zilibotti, 2014; 2017). Patience that is advantageous in given environments may

then well be passed on through the generations, thus yielding traits that persist

over time and across contexts (Galor and Özak, 2016). Isolating the parameters

of the hyperprior may thus be our best bet for getting at stable components of

behaviour that characterize an individual. Whether we want to call such traits

‘preferences’, or whether we would rather devise another term to refer to them, is

then mostly a question of semantics and taste.
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ONLINE APPENDIX

A Choice rule on orignal scale

In my preferred specification, I have assumed that the choice rule is transformed

from its original scale by taking the log twice. This does in no way affect the

conclusions. If we work on the original scale, the optimal choice rule is exp(−t) >
y
x
. We now derive the posterior expectation of the mental time delay t on the

logarithmic scale just like above. To obtain the posterior expectation of the time

delay t itself, we exploit the properties of the log-normal distribution, which has a

mean µ+ 1
2
σ2
p, where σ2

p ≜
ν2σ2

ν2+σ2 is the posterior variance. We thus obtain

E[ t | r ] = exp

(
βr + (1− β)µ+

1

2
σ2
p

)
= exp

(
βr + (1− β)(µ+

1

2
σ2)

)
.

Substituting this mental quantity for t into a choice rule exp(−E[t | r]) > y
x

and

rearranging, we get exp (−exp(βr + (1− β)µ̂)) > y
x
, where µ̂ ≜ µ + 1

2
σ2. Taking

the logarithm of both sides, multiplying by −1, and taking the logarithm again,

yields βr + (1 − β)µ̂ < ln
(
−ln( y

x
)
)
. The left-hand side of this equation can be

used to derive a response distribution as in (8). The subsequent derivation follows

the steps in the main text. The only difference from the choice rule presented in

the main text is now in the definition of the impatience parameter, which takes the

form α̃ ≜ exp
(

(1−β)
β
µ̂
)
. Note, however, that the two models deliver predictions

that are empirically indistinguishable. Indeed, the two models fit to the same data

show a difference in predictive fit that is exactly equal to 0.

B Generalization to include outcome distortions

I have assumed outcomes to be perceived without noise. If outcomes are also subject

to noisy coding, the two dimensions will need to be derived jointly to accurately rep-

resent the decision-making process. Let z ≜ −ln( y
x
). Assuming that the log of the

ratio of the smaller to larger payment is encoded in a way similar to time delays, we

obtain the following likelihood and prior: rz ∼ N (ln(z), ν2) , ln(z) ∼ N (µo, σ
2
o),
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where I assume a common coding noise ν for reasons of empirical identifiability.

Defining γ ≜ σ2
o

σ2
o+ν

2 , we obtain the posterior expectation E[ln(z)|rz] = γrz + (1 −

γ)µo. Deriving the common response distribution for the weighted difference in sig-

nals and normalizing, like done in the main text, we obtain the following stochastic

choice rule:

Pr[(x, τℓ) ≻ (y, 0)] = Φ

(
γ × ln

[
−ln

(
y
x

)]
− β × ln(α t)

ν
√
β2 + γ2

)
, (16)

where I have dropped the time-subscripts for simplicity’s sake.

Notice that the addition of outcome transformations now affects mostly the

model parameters α and β. That is, one could rewrite the numerator of the ex-

pression in parentheses as ln
[
−ln

(
y
x

)]
− β

γ
× ln(αt) (as long as one rewrites the

denominator as ν
γ
×
√
β2 + γ2). One can then see that the addition of a parameter

γ ≤ 1 would simply serve to reinforce the conclusions already reached in the main

text. If γ were to be found to vary in the reward magnitude, however, this addi-

tional parameter could account for the absolute magnitude effect—a topic that is

beyond the scope of this paper.

C Generalization to other types of time tradeoffs

In the main text, I have discussed simple tradeoffs between a smaller-sooner and

larger-later option. Here I show that the model can be generalized to more complex

tradeoffs in a straightforward way. To avoid notational overload, I will use a static

representation that drops the indices for the round in which a stimulus is observed.

Take for instance choice options having payouts at different time horizons, such

as the ones used by Abdellaoui, Bleichrodt, L’Haridon and Paraschiv (2013) to

disentangle discounting from inter-temporal utility. A sooner reward y, τs is then

traded off against a stream of rewards (x, τℓ; z, τs), where x > y > z. This can be

accommodated by replacing the choice rule in (2) with the following expression:

ln

(
p

q

)
> ln

(
y − z

x

)
,
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with all other quantities defined as in the main text. Any additional payments

occurring with the same two delays can be handled similarly.

The model can furthermore be generalized to any time tradeoffs following the

setup in Appendix A of Vieider (2023) for risk. Take a stream of rewards xxx =

(x1, ..., xn), where subscripts index different time delays. Now take a separate stream

yyy = (y1, .., yn). Let us assume for argument’s sake that the latter has more smaller

amounts obtaining at sooner points in time. The generalization of the choice rule

in (2) entails that the larger-later stream will be chosen whenever:

n∑
j=2

pj
p1

(xj − yj)

(y1 − x1)
> 1,

where pj ≜ exp(−τj). This equation takes the form of an optimal choice rule used

in signal detection theory (Green, Swets et al., 1966). The reference event in the

denominator is arbitrary (just like in multinomial logit models), and is here taken

to be the first payoff. Note, however, that all pairwise comparisons are enshrined

within this equation, as can be seen by taking the ratio of the two terms one wants

to compare in the numerator. That is, subjects do not necessarily need to compare

everything to the earliest payoff difference for the choice rule to be applicable, and

more natural comparison points may well be provided by delays with particularly

salient reward differences.

I will further assume that each time delay in the equation above is logged and

evaluated in parallel within a neural network. That implies that there will be a

comparison between the time delays and the objective reward-difference ratio just

like the one discussed in the main text. For an arbitrary comparison j, we will thus

observe the following likelihood functions:

rj ∼ N
(
ln (tj) , ν

2
)

where tj ≜ τj− τ1 for τ1 > 0, and tj ≜ τj+ψ if τ1 = 0. We can now follow the same

steps as in the main text to derive the solution to the general tradeoff, first deriving

the response distribution for each individual time delay, and from there obtaining
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the stochastic choice rule. This yield the following stochastic choice rule:

Pr[xxx ≻ yyy] = Φ

[
1√

n− 1 β ν

n∑
j=2

ln

(
−1ln

(
1(xj − yj)

y1 − x1

))
− β ln(α tj)

]
,

where 1 is an indicator taking the value of 1 if xj − yj > 0, and the value of −1

otherwise. The equation as written above makes two additional assumptions. The

first is that y1 − x1 > 0, as will typically be the case based on the assumption that

yyy contains the smaller-sooner amounts, so that the first amount will typically be

larger than for the larger-later option. The second is that any xj − yj < y1 − x1.

Note, however, that neither of these two assumptions is necessary for the equation

to be applicable—all that is needed in case one or the other assumption is violated

is some additional indexing to ensure that the equation is well-behaved.

D Derivations and proofs

Combination of signal and prior in (7)

The likelihood and prior take the following form:

p(r | t) ∝ exp

(
− 1

2ν2
(r − ln(t))2

)
p(ln(t)) ∝ exp

(
− 1

2σ2
(ln(t)− µ)2

)

We can log the distributions to transform the multiplication into an addition:

ln (p[ln(t)|r]) = ln[p(r|t)] + ln[p(ln(t))]

= − 1

2ν2
(
r2 − 2 r ln(t) + [ln(t)]2

)
− 1

2ν2
(
[ln(t)]2 − 2µ ln(t) + µ2

)
= −1

2

(
1

ν2
+

1

σ2

)
[ln(t)]2 + ln(t)

( r
ν2

+
µ

σ2

)
−
(
r2

2ν2
+

µ2

2σ2

)

We know that the log-posterior distribution will take the following form:

ln (p[ln(t)|r]) = −
(
[ln(t)]2

2σ2
p

− 2 ln(t) θ

2σ2
p

+
θ2

2σ2
p

)
,
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where θ ≜ E[ln(t)|r] is the posterior mean, and σ2
p is the posterior variance. We

can thus complete the square by matching the first two expressions in the sums of

the last two equations above. We start from the first:

− [ln(t)]2

2σ2
p

= −1

2

(
1

ν2
+

1

σ2

)
[ln(t)]2

σ2
p = (λ+ ξ)−1,

which is the variance of the posterior in (7), and where λ ≜ ν−2 and ξ ≜ σ−2.

We can now match the second element:

2 ln(t) θ

2σ2
p

= ln(t)
( r
ν2

+
µ

σ2

)
θ =

λ r + ξ µ

λ+ ξ
=

λ

λ+ ξ
r +

ξ

λ+ ξ
µ,

which is the posterior mean from (7). QED.

The response distribution in (8)

Let z ∼ N (ẑ , σ2
z). From the properties of the normal distribution, we know that

a+ b z ∼ N (a+ b ẑ , b2 σ2
z). The result in (8) follows by substituting a = (1− β)µ,

z = r, ẑ = ln(t), b = β, and σz = ν.

The dynamic equations in (13) and (12)

We start from the following joint-inference problem, concentrating on a single data

point r. For the derivation, I will simplify notation by starting from the hyperpa-

rameters, indexed by 0, and updating them to the posterior indexed by 1:

p(θ, µ, ξ|r) = p(µ, ξ|r)× p(θ|r, µ, ξ).

Dropping dependency on the data in the notation to avoid clutter, we can further

factorize p(µ, ξ) = p(ξ) × p(µ|ξ). This makes it clear that the prior for mean and

precision ought to be modelled through a normal-gamma distribution, which takes

into account the interdependence of µ and ξ conditional on the data. Starting from
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the parameters of the hyperprior, subscripted by 0, we can then update the prior

using a single observation of the inferred time delay, θ1:

p(θ, µ, ξ|r) = p(ξ)× p(µ|ξ)× p(θ|r, µ, ξ)

∝ ξζ0−1exp(−ρ0ξ)×
√
ξ exp

(
−κ0ξ

2
(µ− µ̂0)

2

)
×
√
ξ exp

(
−ξ
2
(θ1 − µ)2

)
∝ ξζ0 exp

(
−ξ
2

[
(κ0 + 1)µ2 − 2µ(κ0µ̂0 + θ1) + (κ0µ̂

2
0 + θ21 + 2ρ0)

])
.

I now write an equation using the quantities we expect to find in the posterior.

Starting from the parameters of the hyperprior, as done above, we can denote the

posterior after the first observation by subscripting the parameters by 1:

ξζ1−
1/2 exp

(
−ξ
2

[
κ1µ

2 − 2µκ1µ̂1 + κ1µ̂
2
1 + 2ρ1

])
.

We can now simply match the quantities in the last two equations. Matching the

powers of ξ immediately gives us the updating equation for the shape parameter:

ζ1 = ζ0 +
1

2
,

and matching the first element in the exponential tells us that

κ1 = κ0 + 1.

Next I derive the updating equation for the prior mean in (12). To do this, I

match the second, middle element in the exponential of the two equations:

κ1µ1 = (κ0µ0 + θ1)

µ̂1 =
(κ0µ̂0 + θ1)

κ0 + 1

= µ̂0 +
1

κ0 + 1
(θ1 − µ̂0),

where the penultimate step divides both sides by κ1 = κ0 + 1, and the last step

exploits that µ̂0 − κ0
κ0+1

= 1
κ0+1

µ̂0.
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The last step will be to derive the updating equation for the rate parameter of

the marginal Gamma distribution. To this end, we can equalize the third terms in

the exponents of the equations above:

κ1µ
2
1 + 2ρ1 = κ0µ

2
0 + θ21 + 2ρ0

κ1
(κ0µ0 + θ)2

κ21
+ 2ρ1 = κ0µ

2
0 + 2ρ0 + θ2

ρ1 = ρ0 +
1

2

[
κ0µ

2
0 + θ21 +

κ20µ
2
0 + 2κ0µ0θ1 + θ21

κ0 + 1

]
= ρ0 +

1

2

κ0
κ0 + 1

(
µ2
0 − 2κ0µ0θ1 + θ21

)
= ρ0 +

1

2

κ0
κ0 + 1

(θ1 − µ0)
2 .

The equations in the main text result from these equations by replacing the subscript

0 with i and the subscript 1 by i+ 1. Q.E.D.

Generalization to repeated stimuli

It is instructive to examine the learning equations derived above to a context where

an identical time delay t is repeated n times. This will allow us to derive an

expression defined entirely in terms of quantities observed by the experimenter. I

now derive such a formulation:

p(θ, µ, ξ|t) = p(ξ)× p(µ|ξ)× p(θ|t, µ, ξ)

∝ ξζ0−1exp(−ρ0ξ)×
√
ξ exp

(
−κ0ξ

2
(µ− µ̂0)

2

)
×
√
ξ exp

(
−ξ
2

n∑
i=1

(θi − µ)2

)

∝ ξζ0 exp

(
−ξ

(
1

2

n∑
i=1

(θi − θ̂)

))
exp

(
−ξ
2

(
κ0(µ− µ̂0)

2 + n(θ̂ − µ)2
))

,

where the last line obtains from setting θi − µ = θi − θ̂ + θ̂ − µ, and where θ̂ =

β ln(t) + (1− β) µ̂0 as derived above.

The derivation now proceeds as above by multiplying out the squared terms,

grouping parameters together, and finally completing the square. We thus obtain
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the following updating equations:

ζn = ζ0 +
n

2

κn = κ0 + n

µ̂n = µ̂0 +
n

κ0 + n
(θ̂ − µ̂0)

= µ̂0 +
n

κ0 + n
β0 (ln(t)− µ̂0)

ρn = ρ0 +
1

2

κ0n

κ0 + n
(θ̂ − µ̂0)

2 +
1

2

n∑
i=1

(θi − θ̂)2

= ρ0 +
1

2

κ0n

κ0 + n
β0 (ln(t)− µ̂0)

2 +
n

2
β2
0 ν

2,

where the substitution in the last term of the last line is based on the definition of

coding noise as ν2 ≜ 1
n

∑n
i=1(ri − ln(ti))

2.

These equations defined in terms of quantities observable for the experimenter

further support the conclusions discussed in the main text based on the learning

equations of the mind. The updating equations of the first three parameters above

look much like before, except that they are now formulated in terms of n random

draws of a signal r for an identical stimulus. The updating equation for the rate pa-

rameter of the Gamma, however, has the virtue of further decomposing the squared

prediction error in the main text. In particular, we can now see that for repeated

signal for an identical stimulus, the sum of squares will add two separate parts—one

based on the deviation of the true logged time delay from the mean of the prior,

and one based on the deviation of a single posterior inference from the mean of the

inferences for an identical stimulus. The latter can furthermore be reformulated

in terms of coding noise. This shows that the posterior precision will be inversely

proportional to the variation of stimuli in the environment, and to the noise with

which single observations will be encoded.

The stochastic choice rule in (14)

Let z ∼ N (ẑ , σ2
z). From the properties of the normal distribution, we know that

c−a−b z ∼ N (c−a−b ẑ , b2 σ2
z). Substituting (9) into (3), rearranging, substituting
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c = ln
[
−ln

(
y
x

)]
, a = ln(α), z = r , b = β , ẑ = ln(t), σz = ν, and normalizing by

the standard deviation gives us (14).

E Econometrics

The noisy coding of time model is inherently stochastic, so that it can be directly im-

plemented without any further need for separate assumptions about the error struc-

ture. I use a Bayesian random-parameter setup to obtain individual-level parameter

estimates jointly with aggregate estimates, which serve as endogenously-estimated

priors for the individual estimates. Compared to purely aggregate estimates, such

a setup has the advantage of producing individual-level estimates of the parameters

of interest; compared to individual-level estimates, such a model discounts noisy

outliers, thus resulting in increased predictive performance (Conte, Hey and Mof-

fatt, 2011; von Gaudecker, van Soest and Wengström, 2011; Baillon, Bleichrodt and

Spinu, 2020). I thus obtain the posterior estimate pi(θθθn|z) given choice data z over

the individual parameter vector θθθn from

pi(θθθn|z) ∝ p(z|θθθn)× p(θθθn), (17)

where z takes the value 1 if the larger-later reward is chosen and 0 otherwise, and

where the likleihood p(z|θθθn) is defined as follows:

p(z|θθθn) = (Pr[(x, τℓ) ≻ (y, τs)])
z × (1− Pr[(x, τℓ) ≻ (y, τs)])

1−z, (18)

with Pr[(x, τℓ) ≻ (y, τs)] taking the form of the choice probability in (14).

Finally, the prior distribution for the individual-level parameters, p(θθθn), takes

the following form:

p(θθθn) = N (θθθ,ΣΣΣ), (19)

where θθθ is a vector containing the aggregate parameter means, and ΣΣΣ is a covari-

ance matrix of the individual-level parameters. Both θθθ and ΣΣΣ are endogenously

estimated from the aggregate data, and serve as priors for the individual-level es-
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timates. The hyperpriors for the parameters in θθθ and ΣΣΣ are chosen to be mildly

regularizing, thus helping the algorithm to converge, but being wide enough to ac-

commodate any plausible parameter values that may emerge from the data. This

follows best practices in Bayesian econometrics (McElreath, 2016), and the esti-

mates reportedare not sensitive to changes in the hyperpriors used, given that the

amount of data can easily overpower any prior at the aggregate level. I maximize

the logged sum over the choice-level observations i of the likelihood function de-

scribed above using Bayesian simulations in Stan (Carpenter, Gelman, Hoffman,

Lee, Goodrich, Betancourt, Brubaker, Guo, Li and Riddell, 2017).

55



F Classroom experiment

F.1 Experiment

The classroom experiment is meant to serve as a proof of concept. I pursue two main

goals. One, I want to nonparametrically quantify both the patterns predicted by

the model (present bias, delay-dependence), and those not predicted by it (strongly

decreasing impatience). While none of these patterns are new, they have rarely

been presented together and based on one and the same experiment. Some are

further disputed, so that establishing these patterns is an important first step.

Two, I want to create an incentivized benchmark to which to compare the non-

incentivized online experiments. As can be seen from the patterns reported below,

the qualitative patterns across subject pools and incentivization protocols are indeed

identical.

Bachelor students attending an introductory class in behavioural economics at

Ghent University were invited to take part in a classroom experiment. The students

had been exposed to the basics of expected utility theory, but had not covered

time discounting yet. Students were told to bring a laptop or tablet to class to

participate in an experiment. They were told that the anonymized aggregate data

would be used to illustrate typical aggregate choice patterns for teaching purposes,

as well as for research purposes. They were also told that 10 students would be

randomly extracted to play one of their choices for real money immediately after

the experiment. Overall, 175 students participated in the experiment and provided

a complete set of responses during the allocated time.

The time delays used in the experiment are depicted in figure 9. They were

chosen to allow for optimal identification of all model components. I chose the

stimuli in such a way as to allow for the identification of patterns predicted by the

model—such as present-bias and delay-dependence—as well as for the identification

of patterns not predicted by the model—such as strongly decreasing impatience. In

particular, comparison of AB to BC and of AC to CE allows for the identification

of present-bias. Comparison of AB and BC with AC, of CD and DE with CE, and

of all the 6 week delays (AB, BC , CD , DE) and 12 week delays (AC , CE) with
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now 6 weeks 12 weeks 18 weeks 24 weeks

A B C D E

Figure 9: Time horizons used in experiment
Illustration of time delays used in the experiment. The maximum delay, indicated by AE, was 24 weeks. This
delay was divided into 4 different sub-periods of 6 weeks, AB, BC, CD, and DE; and into 2 different sub-delays of
12 weeks, AC and CE. Notice that, given 4 delays of 6 weeks, 2 of 12 weeks, and 1 of 24 weeks, the stimuli are
well-fitted by a log-normal distribution.

the full delay over 24 weeks (AE) allow for the identification of delay-dependence.

Strongly decreasing impatience can be identified from the comparison of BC, CD,

and DE.

The future outcome was fixed at e50. The choice of such a round, invariant

amount was meant to ensure that outcomes are perceived objectively, rather than

being subject to noisy perceptions themselves (see online appendix B for a discussion

of robustness to this assumption). The earlier amounts ranged between e33 and

e49 inclusive in steps of e1. Each screen presented one single choice in random

order. Subjects made 158 choices, which took 20 minutes on average. There were

40 repeated choices. Identification of decision noise, which plays a central role in

the model, is thus assured by i) repeated observations of the same stimuli; and ii)

monotonicity violations between similar stimuli.

Before the start of the experiment, the lecturer presented the instructions, to

make sure that everybody had an understanding of the tasks. The lecturer empha-

sized the procedural aspects of the payout mechanism. Both immediate and future

payouts were made by bank transfer. Bank transfers between all major Belgian

banks are immediate. This was emphasized in the instructions, and subjects were

told that in case of an immediate payout, the lecturer would execute the payment

directly and wait for the money to arrive on the student’s account. The student
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would then be asked to verify if the money had arrived and sign a receipt. In case

of a future payment, the lecturer signed a certificate on university letterhead. The

certificate contained the amount to be paid and the date on which it would be

paid and was signed by the lecturer. The certificate also contained the address and

telephone number of the lecturer, and students were encouraged to get in touch in

case they changed bank accounts or they had any doubts about the payment. All

time delays were chosen in such a way as to fall within the same academic year, to

keep the costs of approaching the lecturer low, and to further reassure subjects of

the future payment guarantee.

F.2 Results

I start from an examination of the nonparametric evidence , shown in figure 10.

Panel A plots decumulative choice proportions for the larger-later reward as the

sooner-smaller reward increases from e33 through e49. The choice proportions for

the 6-week delay from 6 weeks, are shifted to the north-east of the choice patterns

for the 6 week delay from the present, thus indicating present-bias (p = 0.011,

two-sided Wilcoxon signed-rank test on individual-level choice proportions for the

later option). Results for the 12 week delay from the present versus a 12-week delay

from 12 weeks are even stronger, and again indicate an increase in patience following

the introduction of the up-front delay (p ≪ 0.001; figure in online appendix ??).

Further comparing discounting patterns for 6-week delays from up-front delays of

6, 12, and 18 weeks (i.e., comparing time delays BC , CD, and DE) yields no

evidence for strongly decreasing impatience. Statistically, there is no difference in

discounting between a 6-week delay from 6 weeks and a 6-week delay from 12 weeks

(p = 0.393). There is also no difference when comparing a delay of 6 weeks from 12

weeks to a 6-week delay from 18 weeks (p = 0.182), or when comparing a 6-week

delay from 6 weeks to a 6-week delay from 18 weeks (p = 0.076). Although this

last comparison is marginally significant, it goes in the opposite direction of the

previous comparison, resulting in an overall null result.

Panel B in figure 10 examines delay-dependence by identifying a probabilistic

non-parametric discount factor from the sooner amount at which a subject starts
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Figure 10: Non-parametric illustration of present-bias and delay-dependence
Panel A compares decumulative choice proportions for 6 week delays from different initial times. Panel B plot the
discount factor for a 12 week delay from the present, δ0,12, against the discount factor calculated based on the two
underlying 6-week discount factors, δ̂0,12 = δ0,6 × δ6,12.

choosing the smaller-sooner reward 50% of the time, divided by the later amount.

The particular case shown compares a 12-week delay from the present (AC) to

its two underlying 6-week delays (AB and BC). Delay-dependence predicts δ0,12 >

δ0,6 × δ6,12, where δ is the discount factor and subscripts indicate time delays in

weeks. The great majority of data points falls above the 45◦ line, indicating delay-

dependence. Importantly, this also holds true when we exclude calculated discount

factors δ0,6 × δ6,12 smaller than 0.64, which could otherwise bias the findings due to

censoring effects (p ≪ 0.001). This effect is even stronger for the longest 24-week

delay (AE) against the product of the discount factors for the 2 underlying 12-week

periods (AC and CE), and is once again, this effect is highly significant even after

accounting for censoring and excluding individuals for whom the calculated discount

factor from the shorter delays is lower than 0.64 (p≪ 0.001).

Figure 11 further shows the comparison of decumulative choice proportions for

the delay AC compared to the delay CE, i.e. for 12 week delays where the first

delay occurs from the present, and the second from an upfront delay of 12 weeks.
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Figure 11: present-bias for 12 week delays—additonal comparisons
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(b) subadditivity, 24 weeks vs 12-week delays

Figure 12: Non-parametric illustration of subadditivity—additonal comparisons
The subadditivity comparisons are obtained by comparing a discount factor over the whole period with the product
of the discount factors of the subperiods. The pattern in panel 12(a) thus obtains from a comparison of the discount
factor δ12,24 with the product of the two discount factors δ12,18 × δ18,24, where the subscripted numbers indicate
the extremes of the time delays. The pattern in panel 12(b) obtains from a comparison of the discount factor δ0,24
to the product of all underlying 12-week discount factors, δ0,12 × δ12,24. Dashed lines indicate correlations.
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